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ABSTRACT 

This research introduces the adjoint of the data assimilation system, which 

together with the classical adjoint sensitivity problem, represents the two fundamental 

components of the complete forecast adjoint sensitivity problem. This adjoint of the data 

assimilation system is then used to investigate the sensitivity of the forecast aspect J to 

the observations and background for idealized analysis problems, and finally a real-data 

case using the NAVDAS adjoint for a situation with unusually large 72-h forecast errors 

over the western United States during February 1999. 

The observation sensitivity is largest when the observations are relatively isolated, 

assumed to be more accurate than the background, and the analysis sensitivity gradients 

are large in amplitude and have a spatial scale similar to the background error 

covariances. The observation sensitivity is considerably weaker for small-scale analysis 

sensitivity gradients. The large observation sensitivities suggest that adaptive 

observations near large-scale analysis sensitivity gradients have a greater potential to 

change the forecast aspect than observations near small-scale analysis sensitivity 

gradients. Therefore, targeting decisions based on the adjoint of the data assimilation 

system may be significantly different from targeting decisions based solely on the 

analysis sensitivity gradients. These results emphasize the importance of accounting for 

the data assimilation procedures in the adaptive observation-targeting problem. 
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I. INTRODUCTION 

Ongoing improvements to the current numerical weather forecast models and data 

assimilation systems, combined with the deployment of space-based and other advanced 

observing systems, have led to a slow, steady reduction in short- and medium-range 

forecast errors over the past few decades (Hogan et al. 1999; ECMWF 2000). Despite 

these advances, it is still clear that a significant component of medium-range forecast 

error is due to analysis (initial condition) error in relatively poorly sampled regions such 

as the mid-Pacific Ocean, the tropics and the Southern Hemisphere Oceans (Rabier et al. 

1994; Rabier et al. 1996). If the regions where additional observations are mostly likely 

to have a large positive impact on the numerical forecast can be identified in advance, 

then these regions can hypothetically be sampled with dropsondes from aircraft or 

unmanned aerial vehicles (UAVs) with the capability to observe the atmosphere. These 

targeted observations would supplement the conventional or routine observing network 

and would be adaptive in the sense that the locations of the supplemental observations 

would vary from day to day. 

The concept of targeted or adaptive observations has generated a great deal of 

interest recently (e.g., Snyder 1996), and several objective targeting techniques have 

emerged to tackle this problem. Some of the approaches include the singular vector 

approach (Palmer et al. 1998; Gelaro et al. 1999; Bergot et al. 1999; Buizza and Montani 

1999), the gradient sensitivity technique (Langland and Rohaly 1996; Bergot et al. 1999), 

the ensemble spread method (Lorenz and Emanuel 1998), the quasi-inverse technique (Pu 
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et al. 1998; Pu and Kalnay 1999), and the ensemble transform approach (Bishop and Toth 

1999). 

The singular vector (SV) and the gradient sensitivity methods, which make use of 

the adjoint of the forecast model, are of particular interest for this dissertation. A 

forecast verification area (FVA), which is a subset of the total domain, and a cost function 

J, which is a scalar measure of some forecast quantity of interest over the FVA, are 

defined. The cost function or forecast aspect J, must be a differentiable function of the 

forecast accuracy, and must also be quadratic in the perturbations for the singular vector 

technique. 

The singular vector (SV) or singular value decomposition (svd) method identifies 

the possible error structures in the analysis field that grow most rapidly as they are 

propagated forward in time by the forecast model. This procedure uses the linearized 

forecast model (tangent model) and its matrix transpose (adjoint), together with a 

normalization or scaling matrix (usually an energy norm) to define a matrix problem, 

whose largest singular values are associated with the most rapidly amplifying singular 

vectors of the forecast error. For targeting applications, the norm or metric used in SV 

calculations should include information about the analysis error covariances. However, 

Palmer et al. (1998) have shown that a metric based on perturbation total energy is a 

useful approximation to the analysis error covariance metric. 

In the gradient sensitivity method, the adjoint of the forecast model is used to 

calculate the gradient of J with respect to the initial conditions for the forecast. It can be 



shown that this gradient, which will be referred to as the analysis sensitivity gradient, is a 

linear combination of the corresponding singular vectors and singular values of a 

compound operator involving products of the adjoint and tangent models with the total 

energy norm provided that J is specified in terms of the total energy error (Buizza et ah 

1997; Gelaro et al. 1999). Under these conditions, most of the structure of the analysis 

sensitivity gradient can be explained using only the leading or most unstable singular 

vectors (Gelaro et al. 1998). 

An example of the most unstable singular vector during the Fronts and Atlantic 

Storm Track Experiment (FASTEX) Intensive Observing Period (IOP) number 17 is 

shown in Fig. 1.1. The 600-hPa temperature structure of the leading singular vector (Fig. 

1.1a) was calculated using the total energy norm (Buizza and Palmer 1995; Rabier et al. 

1996). The FVA over Northern Europe is identified by the box in Fig. 1.1a, and the solid 

line indicates the center for the vertical cross-section (Fig. Lib) for temperature averaged 

over the latitude zone of 40-45° N. 

The corresponding gradient of J with respect to the initial temperature field is 

shown in Fig. 1.2a, where J is the vertically averaged vorticity from 650 hPa to the 

surface in the FVA. The vertical cross section averaged over the latitude zone of 40-45° 

N is shown in Fig. 1.2b. The SV structures and the analysis sensitivity gradients are 

remarkably similar for this case, which indicates that most of the forecast error growth is 

associated with the leading SV.   In the extratropics, the structures associated with the 



SV#1      Temperature 600hPa 

SV#1      Temperature 40-45N 

40W       5 

Figure 1.1. An example of the most unstable singular vector during FASTEX IOP-17 for 
an initial time of 18 UTC 17 February 1997, and optimized for the forecast verification 
time of 12 UTC 19 February 1997. (a) Horizontal temperature structure at 600 hPa with 
the forecast verification area given by the box over Great Britain, and (b) vertical cross- 
section through the temperature structure averaged over the latitude zone of 40-45°N. 
(Figure provided by R. Gelaro, NRL - Monterey.) 



Figure 1.2. As in Figs. 1.1a and Lib, except for the sensitivity of the vertically averaged 
vorticity from 650 hPa to the surface in the FVA with respect to the initial temperature 
field during FASTEX IOP-17. The sensitivity gradient is computed for a 72-h nonlinear 
trajectory ending at 12 UTC 19 February 1997 and an adjoint calculation backwards 42 
hours to the initial time of 18 UTC 17 February 1997. (a) Horizontal temperature 
analysis sensitivity gradient at 600 hPa with the forecast verification area given by the 
box over Great Britain, and (b) vertical cross-section through the temperature analysis 
sensitivity gradient averaged over the latitude zone of 40-45°N. (Figure provided by R. 
Langland, NRL - Monterey.) 



leading SV or analysis sensitivity gradient usually have maximum amplitude in the lower 

troposphere, tilt into the prevailing westerlies, and correspond to growing baroclinic 

disturbances (Rabier et al. 1994; Rabier et al. 1996). The structures may be quite 

different in the tropics or when associated with other unstable phenomena (Buizza and 

Palmer 1995). 

It is important to note that structures such as those shown in Figs. 1.1 or 1.2 are 

not measures of analysis error but indicate the directions along which the analysis error is 

likely to grow most rapidly. While only a small part of the analysis error may project 

onto these structures, growth of this component of the analysis error may dominate the 

forecast error (Gelaro et al. 1999). Even though the actual analysis errors may be 

considerably larger in other regions, it is the dynamically sensitive areas that should be 

most carefully observed. However, this does not imply that it is not necessary to observe 

in non-sensitive regions, since the linearization implicit in either the SV or gradient 

sensitivity techniques requires that the basic state for linearization be reasonably close to 

the true state. 

These singular vectors (Fig. 1.1) and analysis sensitivity gradients (Fig. 1.2) were 

determined a posteriori, using the forecast from an analysis valid at the initial or targeting 

time. However, real-time targeting requires that the target area be identified in advance to 

allow time for flight planning and deployment of the observations. It is possible to create 

a reasonably close facsimile of these unstable structures a priori using the singular 

vectors generated from the 48- or 72-hour forecasts starting from some earlier time 



(Gelaro et al. 1999). Once the sensitive regions have been identified, a flight track is 

chosen to sample the sensitive regions given the constraints of aircraft endurance, range, 

and economic limits. 

Several recent field studies have been conducted to test the concept of targeted or 

adaptive observations. The first, a sub-experiment of FASTEX (Joly et al. 1997), was 

conducted in the North Atlantic during January and February 1997, and had a defined 

forecast verification area encompassing Great Britain and Northern Europe. The North 

Pacific Experiment (NORPEX; Langland et al. 1999b) was entirely devoted to 

investigating the impact of targeted observations on the downstream area over the United 

States. These two experiments were followed by the National Centers for Environmental 

Prediction (NCEP) Winter Storms Reconnaissance (WSR) missions of 1999 and 2000 

(Szunyogh et al. 2000). 

Some of the targeting sorties carried out during FASTEX (Langland et al. 1999a; 

Bergot 1999; Szunyogh et al. 1999) and particularly NORPEX (Langland et al. 1999b) 

and WSR (Szunyogh et al. 2000) were successful, in the sense that assimilation of the 

dropwinsondes resulted in improved forecasts over the verification domain and at the 

verification time. Other targeting sorties using the same targeting algorithms were 

unsuccessful (Bergot 1999), which demonstrated that simply presenting additional 

observations in an arbitrary or highly localized pattern to the data assimilation systems 

does not guarantee that the subsequent forecasts will be improved. Perhaps this should 

not be too surprising since, strictly speaking, data assimilation and forecasting are 



statistical problems in which the minimum variance solutions are obtained in an ensemble 

sense. Thus, it can never be guaranteed that a minimum variance solution will be 

obtained by adding observations. Many other reasons are possible for the forecast 

failures. Reasons related to possible inadequacies in the model or targeting technique 

include: (i) the adjoint and tangent models may have been linearized about atmospheric 

states that were too different from the true state; (ii) the forecast model adjoints (which 

usually do not include all physical processes) may not describe the physical phenomena 

adequately; (iii) the forecast models may not be accurate or complete enough; or (iv) 

details of the targeting technique (such as the choice of the energy norm in the singular 

vector method) might be flawed. Other possible reasons for forecast failure are 

concerned with the data assimilation process, the observing systems, and the way in 

which the targets are sampled. 

The objective targeting techniques discussed above identify regions or structures 

where the forecast is sensitive to analysis errors. However, simply deploying a 

dropwinsonde in a sensitive region does not necessarily change the analysis. The 

dropwinsonde report must go through a complex data assimilation process before it is 

allowed to influence the analysis, and potentially affect the forecast. In data assimilation 

procedures, the reports are first quality controlled and checked against other observations 

(buddy-checked). The observations that pass the data screening procedures are allowed to 

interact with the background field (usually a 6-hour forecast from the model) and the 

other observations. Only then can an observation truly affect the analysis. The effect of 

an observation on the analysis (and thereby the forecast) depends upon the specified 
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background and observation error statistics, and the distribution and properties of all 

other observations in the vicinity. None of the above objective targeting techniques 

provides any guidance on these issues that lie within the realm of the data assimilation 

step versus the modeling step. Consequently, the placement of the adaptive observations 

in the sensitive areas has been largely subjective. 

One can imagine a number of reasons for the failure of targeting exercises that are 

inherently related to the data assimilation system. For example, how should structures 

such as those in Figs. 1.1 and 1.2 be sampled - how many dropwinsondes are needed and 

where should they be placed? How will other observations in the vicinity affect the 

outcome, and should the sampling strategy account for their likely presence? What effect 

does the background error, which is likely to be large and not well known in poorly 

observed regions, have on targeting results? 

A very critical issue is whether the data assimilation system is capable of 

optimally assimilating the targeted observations. Recent research by Fischer et al. (1998), 

Bergot (2000), Rabier et al. (2000), and Bishop et al. (2000) suggests that advanced 

assimilation techniques, such as four-dimensional variational data assimilation (4DVAR), 

are better able to utilize targeted observations than three-dimensional variational data 

assimilation systems (3DVAR). Bergot et al. (1999) found that the French operational 

3DVAR data assimilation system required that all of the analysis sensitivity structure 

must be sampled, rather than just the extrema. They concluded that the success of 

adaptive observations will depend on the data assimilation scheme. 



The importance of taking into account the characteristics of the data assimilation 

system and the presence of other observations has been emphasized by Baker and Daley 

(1999), Doerenbecher et al. (2000), Berliner et al. (1999), Baker and Daley (2000), 

Doerenbecher and Bergot (2000), and Bishop et al. (2000). Extensions to the present 

targeting strategies have been proposed to address these limitations, e.g., the observation 

adjoint sensitivity approach (Baker and Daley 2000; Doerenbecher and Bergot 2000) and 

the ensemble transform Kaiman filter techniques (Bishop et al. 2000). The observation 

adjoint sensitivity approach uses the adjoint of the data assimilation system to compute 

the sensitivity of the forecast aspect J to the observations and the background, while 

taking into account the specified background and observation error statistics, and the 

distribution and properties of the other observations in the area. The Ensemble Transform 

Kaiman Filter (ET KF) approach uses a Kaiman filter to predict the reduction in the 

prediction error variances due to the adaptive observations. This method also accounts 

for the presence of other observations and, provided the assimilation system uses the 

background error covariance matrix generated by the ET KF, the error characteristics of 

the data assimilation system. 

The research in this dissertation and in Baker and Daley (2000) was motivated by 

preparations in late 1996 by scientists at the Naval Research Laboratory in Monterey, CA 

for then upcoming FASTEX experiment. Although the SV and analysis sensitivity 

gradients highlight areas of the atmosphere with large sensitivity to the initial conditions, 

neither method is able to give any information as to whether the initial errors are likely 

due to the observations (or lack thereof), the background, or the data assimilation system. 
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For targeting applications, neither method is able to provide guidance on where the 

targeted observations should be placed, given the presence of other observations and the 

characteristics of the assimilating algorithm. In view of these limitations, the author and 

R. Daley discussed the feasibility of determining the sensitivity of the forecast aspect to 

the observations and the background. Based on these discussions, R. Daley derived the 

equations for observation and background sensitivity presented in Chapter II, which was 

the genesis of the following research. 

Although the research is focused on the adaptive observation-targeting problem, 

the potential applicability of the data assimilation adjoint theory is much broader, in that 

it illustrates how data assimilation works and lends insight into how observations are used 

by the data assimilation system. 

The purpose of the research described in this dissertation is to thoroughly 

investigate observation adjoint sensitivity, and assess its potential application for the 

adaptive targeting of observations. The data assimilation adjoint theory is presented in 

Chapter II. Observation and background sensitivity are investigated in the simplified 

context of one- and two-dimensional analysis systems in Chapter HI. In Chapter IV, the 

observation sensitivity using the NAVDAS (NRL Atmospheric Variational Data 

Assimilation System) adjoint (Daley and Barker 2000a) and analysis sensitivity gradients 

computed using the NOGAPS (Navy Operational Global Atmospheric Prediction System) 

adjoint (Rosmond 1997) is investigated. The summary and conclusions are presented in 

Chapter V. 
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II.     DATA ASSIMILATION ADJOINT THEORY 

A.       DERIVATION OF OBSERVATION AND BACKGROUND SENSITIVITY 

The derivation of the observation and background sensitivity begins with the 

three-dimensional analysis problem and the analysis equation (Daley 1991), 

xa=xb+K(y-#{xb}) (2.1) 

The vector of observations (of length M) is given by y, the background vector (of length 

N) is given by xb, and the analysis vector (of length N) is given by xa. In general, the 

application of the observation or forward operator H represents any necessary spatial and 

temporal interpolations from the forecast model background to the observation location 

and time. If the observed quantity is not directly related to the model state variables, then 

H also represents the transformation from the forecast values to the observed quantity. 

For satellite radiances (or brightness temperatures), H{xb}represents the forward 

radiative transfer model applied to xb and computes forecast or background radiances. 

The differences between the observation and the background in observation space 

(y-H{xb}) is referred to as the innovation vector, and the quantity 

xa-xb =K(y-H{xb}) is the correction vector. If one considers linear analysis 

problems only, then 

xa=xb+K(y-Hxb). (2.2) 
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The matrix H is the Jacobian matrix corresponding to the forward operator H{xb} 

linearized about the background state vector. This approximation is valid for the radiative 

transfer relationship between temperatures and radiances, but is not valid for moisture 

retrievals. The Kaiman gain (or weight) matrix, K, is given by 

K = P,Hr (HPfcH
r + R)-', (2.3) 

where Pb is the background error covariance matrix and R is the observation error 

covariance matrix. 

Equation (2.2) may be rewritten as 

xa =xb-KHxb+Ky = (I-KH)xb+Ky, (2.4) 

where I is the NxN identity matrix. The sensitivity of the analysis to the observations 

3xa/9y and the sensitivity of the analysis to the background 3xa/3xb is derived first. 

Following Gelb (1974), the vector gradient of a vector is a matrix and is given by 

dxT/dy = A,or dxj/3yk = a^. Using this relationship, the following equations may be 

derived: 

dxa/dy = KT, (2.5a) 

9xa/9xb = (I - KH)r = I - HrKr, (2.5b) 

where 

Kr=(HPbH
r+R)-1HPÄ. (2.6) 
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One useful application of (2.5a,b) is to the adaptive targeting problem. Suppose 

that the targeting is based upon the adjoint-based techniques described in Chapter I. 

The cost function / is a scalar measure of some quantity of interest over the forecast 

verification domain (which is a subset of the total domain). The gradient of J with 

respect to the initial conditions for the forecast is given by 3//3xa, and is a vector of 

length N. This is the analysis sensitivity vector described in Chapter I. In the following 

development, the individual unstable singular vectors or some linear combination of these 

singular vectors may be used instead of the actual gradient dJ/dxa, realizing that they are 

closely related, as described in Chapter I. 

Except in theoretical experiments, the forecast error is not known when selecting 

targets and the cost function J must be based on the forecast alone. During FASTEX, 

the forecast aspect J for the adjoint sensitivity calculations was defined as the average 

lower troposphere vorticity in the forecast verification domain since low-level 

tropospheric vorticity is thought to be highly correlated with the cyclone position forecast 

error (Langland et al. 1999a). This scenario is referred to as an a priori (pre-deployment) 

estimate of J, as opposed to an a posteriori (after-the-fact) estimate. 

The primary quantity of interest in this dissertation is the sensitivity of the forecast 

aspect to the observations or dJ/dy, which is a vector of length M and will be referred to 

as the observation sensitivity vector. Also of interest is the sensitivity of the forecast 

aspect to the background field dJ/dxb, which is a vector of length N and will be referred 
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to as the background sensitivity vector.  Using the chain rule and (2.5), the observation 

and background sensitivity vectors may be written as 

dJ/dy = ^^- = KT dJ/dxa, (2.7a) 

dJ/dxb = ^-^- = (I - nTKT)dJ/dxa (2.7b) 
3xb dxa 

Expanding the terms in the transposed Kaiman gain matrix (Kr) in (2.6) using 

(2.3) gives the following expressions for the observation and background sensitivity 

vectors, 

dJßy = (HP,Hr + R)-1 HP, a//3xa, (2.8a) 

dJ/dxb =[l-Hr(HPÄH
T+R)-1HPö]d//3xfl. (2.8b) 

Strictly speaking, the applicability of the chain rule in (2.7) requires that the 

analysis sensitivity vector dJ/dxa be calculated using all the observations that are used in 

generating K or Kr. Therefore, the assumption that dJ/dxa is specified independently 

of any additional targeted observations is not entirely correct. The adjoint and singular 

vectors are determined by the tangent forward propagator based on the nonlinear 

trajectory. As long as the change to this trajectory (due to the additional observations) 

evolves linearly over the optimization interval, the adjoint sensitivity gradient vectors and 

singular vectors should remain basically unchanged (Harrison et al. 1999). Thus, the 

assumption that 3//3xa would not change substantially if additional observations were to 
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be used is reasonable, and under these circumstances the use of the chain rule is 

appropriate. 

In the analysis problem (2.1), K is the matrix of weights given to the innovation 

or difference between the observation and the background value (in observation space). 

In an analogous sense, the matrix Kr is the matrix of weights given to the analysis 

sensitivity gradient for the observation sensitivity problem (2.7a). 

It is also convenient for display purposes to define the analysis space projection of 

the observation sensitivity vector, 

Hr dJ/dy = dJ/dxa - dJ/dxb. (2.9) 

Thus, (2.8a) and (2.8b) give a method of calculating the gradient (or sensitivity) of 

the forecast aspect with respect to the observations dJ/dy and the gradient of the forecast 

aspect with respect to the background field dJ/dxb. In order to use these expressions, the 

observation and background error covariances and the positions and types of the 

observations must be specified. One must also specify any forward operators H and 

matrix transposes Hr required to transform variables between observation to grid space. 

Assuming that dJ/dxa or a suitable proxy for the analysis sensitivity vector has already 

been computed, the actual observed and background values are not required. Note that 

this approach (unlike that of Le Dimet et al. 1995) does not require a second-order adjoint 

to determine the forecast aspect sensitivity with respect to the observations. 
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B. MULTIVARIATE OBSERVATION SENSITIVITY 

Equations (2.1) - (2.9) are written is general terms, and the variables are not 

explicitly specified. For univariate problems, the variables in (2.1) - (2.9) are the same. 

To understand observation and background sensitivity, it is useful to expand the 

equations into the three components of the multivariate analysis problem (excluding 

moisture and indirect observations such as brightness temperatures). The sensitivity of J 

to a given observation in the multivariate setting includes contributions due to the 

background error cross-correlations between geopotential height (h), zonal (u) and. 

meridional (v) wind components, and the height and u and v wind analysis sensitivity 

gradients. 

The background error covariance matrix Pb is now composed of the 3x3 sub- 

matrices as follows, 

(2.10) 

where CL is dimensioned (NxN) and represents the covariance between x(=h,u,v) 

and v (=h,u,v). 

The total sensitivity of J to the height observations may be derived by expanding 

the terms in (2.8a) into the multivariate components using matrix-vector notation. Using 

(2.10), let 

c* c,,« chv 

p.= c«, uu uv 

cvh vu cw 
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S = (HRHr + R)"1 = 
SftA s* S/,v 

S* S«« S„v 

Svh V« sj 
(2.11) 

where the subscripts on the (M x M) sub-matrices S^ indicate that the background error 

covariance is computed between the locations of observations of type x and type y. The 

forward operator, which is composed of the three sub-matrices 

H = 

HA 

H 

(2.12) 

transforms P,, into the observation space given by the subscript x on H^. Finally, the total 

observation sensitivity and analysis sensitivity gradients are expanded into their three 

component vectors 

a//3y = 
a//9h0 

a//8u0 

|_a//avj 
(2.13) 

and 

dJ/dxa = 

dJ/dha 

dJ/dua 

Mßva 

(2.14) 

where the subscripts o and a refer to the observations and analysis, respectively. 
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Equation (2.8a) may then be written as 

dJ/dh0- ^hk      ^hu      ^hv HA c    c    c ^hh      ^hu      ^hv ~dj/dha 

c)J/du0 = sh s    s uh           uu           uv H„ c    c    c uh          uu          uv dJ/dua 

37/avJ Sh   s    s _    vn           vu           w_ LHvJ c    c    c _     vh            vu           w _ [dJ/dxa 

(2.15) 

Multiplying through the terms in (2.15) gives the three equations for the total sensitivity 

of J to the h, u and v observations, 

a//3h0 =shkuh[Chh^ßK+clmdj/dua+chvdJßya] 
+stoHjcuA dj/dha+cm dj/dua +cuv ar/dvj, 
+SAvHv[CvA dJ/dha +CVU dJ/dua +CW dJ/dv J 

dj/du0 = sjah [c* dj/dha+cte dj/dua + chv a//av. ] 
+suaHjcBA ay/ahfl+cua ay/dua+cav dj/dvj, 
+SWHV [cVÄ a//aha+cVH a//aua+cw a//8va ] 

(2.16a) 

(2.16b) 

and 

a//av0 = sAtc« a^/ah. +cte dj/dua +cAv a//avj 
+SWHJCHA ay/ahfl+cuu a//aua+cuv a//avj. 
+SWHV[CVA a//aha+cVtt ay/aua +cw a//3vj 

A compact notation is introduced next. From (2.6), 

(2.16c) 

K     = S  HC 
xy.z        xy    y   yz' 

(2.17) 

The subscripts x, y and z on K^,z are defined as follows. The term (HPÄH
r) in (2.11) is 

the projection of the background error covariance matrix into the observation space given 

by the first two subscripts (x and y). The termHyCyz in (2.16) is the projection of the 
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background error covariances from the analysis sensitivity grid space (as denoted by the 

third subscript, z) into observation space (as given by the second subscript, y). 

The total sensitivity of J to the height observations may then be written as the 

sum of the nine partial sensitivities, 

dj/dh0 = KL,A a//aha+KKu dj/dua+KL,V a//3va + KL.A a//ahQ + KL,„ a//dua 
(2.18a) 

+KL,V a//ava +KL, MßK +KL, a//aua +KL, a//^.. 

The total sensitivity of J to the u-wind observations is, 

dj/du0=K^ a//aha+K^ a//aua+K^V a//aVa+KL,A a//aha+KL,„ a//aua 
(2. lob) 

+KL, dj/dy0+K
T

UVM djß\+K^ a//aufl+K:V,V ay/ava, 

and the total sensitivity of J to the v-wind observations is, 

dj/dx0=KT
vhM dj/dha+KT

vhji dj/dua+K:A,V ay/ava+K^ a//aha+*£, aj/aua 
(2. loC) 

+KL,„ a7/ava+K:VIA a//aha+K
T

„, aj/aua+K j;, a//ava, 

where Kr is defined by (2.17). Thus, the total sensitivity to the height observations 

(2.18a) is composed of nine terms resulting from the interaction of the height 

observations with other the h, u or v observations, given the initial h, u or v analysis 

sensitivity gradients. 

The first term in (2.18a) involves only the height observations and the height 

analysis sensitivity gradient, and represents the univariate height observation sensitivity. 

Similarly, the fifth term in (2.18b) and the last term in (2.18c) are the u- and v-wind 

component univariate observation sensitivities. 
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C.        MULTIVARIATE BACKGROUND SENSITIVITY 

The background sensitivity given by (2.8b) may be expanded into component 

form using (2.10) - (2.14) as 

dJ/dhb~ ~dJ/dha 

dJßub = aj/do. 
a//3vj [dJßva 

Shk      S/m      Shv 
H 

{HI   HI   HlJ ^uh      ^uu      ^uv H 
c      c      c H 

•"AA      ^ku 

'uh uu 

yvh v« 

^hv "a//*. 
r dJ/dua 

cw dJßya 

(2.19) 

The rightmost four matrices in (2.19) simply equal the observation sensitivities from 

(2.15) so that 

~dJß\ ~dJßha- 

dJ/dub = a//aua 

_dJßvb\ [dJßya\ 
-[Hl   Hl   HlJ 

dJßh0 

dJ/du0 

a//9vj 
(2.20) 

or 

~dJßhb~ 'dJß\ 

dJ/dub = dJ/dua 

ßjßvb_ [dJßya\ 
- Hl dJßh0 - Hl dJ/du0 - Hl dJ/dv0 (2.21) 

where the observation sensitivities are defined according to (2.18a-c). 
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III.    EXPLORATION OF OBSERVATION ADJOINT SENSITIVITY 
USING IDEALIZED CASES 

The purpose of this section is to explore systematically the behavior of the 

observation sensitivity as a function of the analysis parameter space. These analysis 

parameters include the background error correlation length scale, analysis sensitivity 

gradient length scale, and the relative magnitude of the observation error variances to the 

background error variances. Since observation sensitivity also changes as observations 

are added to the analysis, the effects of the observation density will also be examined in 

this section. The simplified context of one- and two-dimensional univariate and 

multivariate analyses and adjoints are used to facilitate the interpretation and discussion. 

A.       AN EXAMPLE OF OBSERVATION AND BACKGROUND SENSITIVITY 

The adjoint sensitivities to the background and observations in (2.8a,b) are 

illustrated for a two-dimensional horizontal univariate (e.g., geopotential height) case. 

The analysis sensitivity vector dJ/dxa, which is the gradient of / with respect to the 

initial conditions for the forecast, is assumed to be already calculated on a two- 

dimensional domain with N equally spaced grid points. The two independent variables of 

the domain are defined as x and y (not to be confused with the definitions of 

analysis/background and observation vectors in Chap. ILA). The domain is non-periodic 

and is given by -Jt<x<7t and -n<y<7t.   The number of grid points in the x and y 

directions is N1/2 and the grid lengths Ax and Ay are equal. 
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If there are M observations of the same variable type as the analysis variable (such 

as height), then the forward observation matrix H in (2.8a,b) is simply a linear 

interpolation operator. The observation errors are assumed to be uncorrelated so that the 

observation error covariance matrix R = e% where I is the M x M identity matrix and £r2 

is the (constant) observation error variance. The background error covariance Pb is an N 

x N matrix with the element (i,j) given by £b2pb(Xi,Xj,y;,yj), where £b2 is the (constant) 

background error variance and pb is the background error correlation between the two 

analysis grid points. For these examples, the special Second Order Autoregressive 

Function (SOAR) is used to define pb as 

pb(xi,xJ,yi,yj) = 
/ 

—r/ 1+AjexplA*J (3-D 

where Lb is the correlation length for the background error, and the distance between two 

grid points is given by 

r^-^fH^-yjff- 0-2) 

The analysis sensitivity gradient or vector is simulated with simple trigonometric and 

exponential functions. Analysis sensitivity vectors for error cost functions tend to be zero 

or essentially zero over most of the domain. The non-zero regions of the analysis 

sensitivity gradient are usually small in spatial extent, and are referred to as the target. 

Two such imposed analysis sensitivity vectors are shown in Fig. 3.1, where Fig. 3.1a is 

for a small target (small spatial scale) and Fig. 3.1e is for a large target.   The two patterns 
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Figure 3.1. Simulated sensitivity vectors for a small target (a-d) and a large target (e-h). 
The imposed analysis sensitivity vectors are shown in (a) and (e), the observation 
sensitivity vectors in (b) and (f), the background sensitivity vectors in (c) and (g), and the 
observation sensitivity measures in (d) and (h). The observation locations are given by 
the "+". The color scale is indicated along the bottom. 
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bear some resemblance to the constant pressure projection of the analysis sensitivity 

gradient shown in Fig. 1.1a. 

A hypothetical situation in which the analysis sensitivity gradient straddles a 

coastline is simulated in Fig. 3.1, where the continent is on the left-hand side of the figure 

and the ocean is on the right-hand side of the figure. In these figures, N1/2 = 29 and the 

grid length is rc/14. The observation locations are shown by the "+" signs in Figs. 3.1b-d 

and 3.1f-h. An observation is assumed to be available at every gridpoint over the 

continent (-7r < x < 0), with no observations over the ocean (0 < x <7c). The observations 

and background values are specified to be equally accurate, or er=£Ä=1.0.    The 

background error correlation length is defined as l^ = it/6 = 2.42Ax.     The background 

sensitivity vector dJ/dxb  (from (2.6b)) corresponding to the small target (small-scale 

analysis sensitivity vector) of Fig. 3.1a is shown in Fig. 3.1c. The background sensitivity 

vector corresponding to the large-scale analysis sensitivity vector of Fig. 3.1e is shown in 

Fig. 3.1g. An objective measure of observation sensitivity is shown in Figs. 3.1d,h. This 

measure will be discussed in the next sub-section. 

Since the background sensitivity is a grid point quantity, it is easily plotted. 

Because the observation sensitivity vector dJ/dy (from (2.8a)) is in observation space 

(defined only at the observation locations), it is more difficult to contour. There are 

several ways around this difficulty, which will be discussed later. However, one obvious 

technique is to assume that an observation is located at every grid point. This approach is 

applied to the present example. Over the continent, the observation error £r may be set to 
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1.0 as above. Over the ocean, setting the observation error £r to 1.0 x 106 with a 

background error variance of 1.0 is equivalent to having no observations over the ocean. 

The observation sensitivity vector dJ/dy may then be easily plotted. With these 

specifications, the observation sensitivity vectors dJ/dy corresponding to the small and 

large analysis sensitivity vectors in Figs. 3.1a and 3.1e respectively are shown in Figs. 

3.1b and 3.le. 

A number of features in Fig. 3.1 merit comment. First, in the unobserved ocean 

portion (right half) of the domain, the background sensitivity and analysis sensitivity are 

the same, and the observation sensitivity is zero (because there are no observations). 

Turning now to the left halves of each panel of Fig. 3.1, which is the well- 

observed continental interior portion far from the coastline, differences are apparent 

between the small target case (Figs. 3.1a-d) and the large target case (Figs. 3.e-h). For 

the small target case (Figs. 3.1a-d), even though the analysis sensitivity gradient is well 

sampled in the continental interior, there is no sensitivity to the observations, only to the 

background. For the large target case of Fig. 3.1e-h, the observation sensitivity is the 

same as the analysis sensitivity in the continental interior and there is no sensitivity to the 

background. 

The well-sampled continental interior case can be easily explained following 

procedures developed in Daley (1991, section 4.5). When the background errors are 

assumed to have a red spectrum, which implies that the background errors are primarily 

large scale, analysis algorithms such as (2.1) use the observations primarily to reduce the 
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large-scale errors. Because the small-scale background errors are implicitly assumed to 

be relatively small, the observations have very little effect on these small spatial scales. 

For this example, the small-scale features of the analysis are derived primarily from the 

background and the large-scale features are derived primarily from the observations. In 

an adjoint context, this means that the background sensitivity will be derived primarily 

from the small scales of the analysis sensitivity and the observation sensitivity will be 

derived primarily from the large scales. Consequently, for large targets (Fig. 3.If) there 

will be a large observation sensitivity and small background sensitivity over the 

continent; the opposite will be true for small targets (Fig. 3.1b). 

The region along the coastline, which is the boundary between the well sampled 

and the unsampled regions, is considered next. For the small target analysis sensitivity 

gradient, the sensitivity to coastal observations is only slightly larger than in the well- 

sampled continental interior (Fig. 3.1b). For the large target (Fig. 3.1e-h), the situation is 

completely different. In a narrow region along the coastal boundary, both the sensitivity 

to the observations (Fig. 3. If) and the sensitivity to the background (Fig. 3.1g) are greater 

in magnitude than the analysis sensitivity (Fig. 3.1e) at the same gridpoint. The 

background sensitivity is of opposite sign to the observation and analysis sensitivities in 

this coastal region, which is consistent with (2.9). This phenomenon has been defined by 

Baker and Daley (2000) as observation and background super-sensitivity, respectively. 
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B.       OBJECTIVE MEASURES OF OBSERVATION SENSITIVITY 

In Baker and Daley (2000), observation super-sensitivity was defined to exist 

whenever the magnitude of the observation sensitivity exceeded the analysis sensitivity 

gradient at that location. This measure is strictly valid only for observations located at 

gridpoints, and for univariate problems (i.e., the observation sensitivity and analysis 

sensitivity gradients variables are the same). A different objective measure of 

observation sensitivity is defined to overcome these limitations. This measure allows for 

observation sensitivity values to be compared for different locations within the domain, 

or for different analysis sensitivity gradients. 

Define the vector a as the limit of the observation sensitivity as the background 

error correlation length l^ -» 0 and the observation error variances £,- —> 0, or 

a = lima//ay|^. (3.3) 

The cross-correlation terms in (2.16) become zero in the limit as 1^ —»0. The off- 

diagonal univariate correlation terms also become zero in the limit as l^ —» 0, while the 

diagonal correlation terms equal one in the limit as l^ —» 0. In the limit of L^ —> 0 and 

er -> 0, (3.3) reduces to 

a=(HHrr'Ha//axa. (3.4) 

For the special case in which the observations are assumed to be located at gridpoints, 

then (HHr)-'=I and 
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a = H9//axö. (3.5) 

Similarly, define the vector of observation sensitivity as o = dJ/dy. The 

observation sensitivity measure (OSM) for the m* observation is defined as the 

observation sensitivity divided by the limit of the observation sensitivity as Lb -» 0 and 

£r -> 0 (both for the m* observation), or 

OSM=om/am, (3.6) 

where the observation and analysis sensitivity gradient variables in om and am are the 

same. Observation super-sensitivity is then defined to exist when |OSM| > 1. The OSM 

for the examples in Fig. 3.1b,f are plotted in Figs. 3.1d,h, and clearly shows the narrow 

bands of super-sensitivity along the coastline for the large-scale target. 

Similarly, the maximum observation sensitivity measure for all observations may 

be defined as 

OSMmax=max[om/aJ, \<m<M. (3.7) 

Finally, a measure of the observation sensitivity over a network of observations 

can be defined. This network may be any given set of observations, such as a suite of 

deployed observations, or all of the observations in a single rawinsonde profile. This 

measure cannot exceed unity unless super-sensitivity exists for at least one observation in 

the network. The network observation sensitivity measure is given by 

M M 

X(o-)72 
m~\ I    m=\ 

OSMnet=X(oj75>m)2. (3.8) 
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The measures in (3.6) and (3.7) have one fundamental flaw. When am is very 

small, the OSM will be very large solely for that reason. If am is zero, then the OSM 

measures in (3.6) and (3.7) will be undefined, and the OSM must be carefully applied. 

The OSM in (3.8) is less likely to be singular under these conditions. Nonetheless, the 

OSM does allow super-sensitive observations to be easily identified and observation 

sensitivity values to be compared, provided that care is taken with its use. 

C.       ONE-DIMENSIONAL UNTVARIATE OBSERVATION AND 
BACKGROUND SENSITIVITY 

1.        Observation Super-Sensitivity Along a Coastline 

A simpler one-dimensional height univariate analog to the two-dimensional 

example described above is considered to understand the super-sensitivity found along 

the coastline in Fig. 3.1. The results from three one-dimensional univariate experiments 

are presented in Fig. 3.2. In Fig. 3.2 (a-d), the domain contains 101 evenly spaced 

gridpoints from 7C to +%. In the first case, the coastline is located at gridpoint 51, with a 

height observation located at every point to the left of (and including) gridpoint 51. The 

background error correlation length scale (Ij,), which was chosen empirically to give 

large observation sensitivity, equals 3.33Ax and is shown for gridpoint 51 in Fig. 3.2a, 

where the abscissa is grid location (x) and the ordinate is the correlation between the 

height value at gridpoint 51 and adjacent gridpoints. The specified height analysis 

sensitivity gradient is shown in Fig. 3.2b, and is given by a simple cosine wave with a 

scale (Ls) equal to 5.31 Ax with an amplitude of 1.0. The length scale Ls is chosen such 

that the sum of the analysis sensitivity over the grid domain is nearly zero. This choice 
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Figure 3.2. Examples of one-dimensional univariate height sensitivity for (a-h) coastal, 
and (i-1) single observation analysis systems. The background error correlation function 
for an observation at gridpoint 51 for (a,i) Ij, =3.33Ax, and (e) l^ =6.67Ax, (b,f,j) the 

imposed analysis sensitivity gradients with L,=5.31Ax, (c,g,k) the observation 

sensitivities, and (d,h,l) the background error sensitivities. The domain consists of 101 
gridpoints, where er=0.1 and efc=1.0. Values are plotted as a function of the grid 

location (abscissa) and amplitude (ordinate). 
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allows the computational results to be compared with analytical calculations for an 

infinite domain when the analysis sensitivity gradient is defined as a cosine wave. The 

background error variances are assumed to be spatially uniform and are equal to 1.0. For 

illustrative purposes only, the height observations are assumed to be nearly perfect (£r = 

0.1).   This small observation error variance prevents the matrix (HP^HT +R)"1 in (2.6) 

from becoming singular. The resulting observation and background sensitivity vectors 

are shown in Figs. 3.2c and d, respectively. 

These analysis and observation sensitivities are similar to Fig. 3.1e over the 

continent (left of gridpoint 51). The analysis and background sensitivities are similar to 

Fig. 3.If over the ocean (right of gridpoint 51). At the coastline (gridpoint 51) in Fig. 

3.2c, the observation sensitivity exceeds the analysis sensitivity and the background 

sensitivity is large, but is of opposite sign. Notice also the observation sensitivity 

oscillations immediately adjacent to gridpoint 51 on the inland side of the coastline. 

Thus, there is evidence of observation super-sensitivity at the coast in Figs. 3.1e,f. 

Figures 3.2e-h are similar to Figs. 3.2a-d, except that the background correlation 

length scale is doubled (Z^, = 6.67Ax). The principal effect is to decrease the observation 

(Fig. 3.2g) and background (Fig. 3.2h) super-sensitivities at the coastal gridpoint 51. The 

observation sensitivity oscillations immediately adjacent to gridpoint 51 in Fig. 3.2c do 

not exist in Fig. 3.2g, where the observation sensitivity at gridpoint 51 blends smoothly 

with the interior continental values. 
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The special case of a single perfect (£r = 0) observation at gridpoint 51 is shown in 

Fig. 3.2i-l. The background error correlation and analysis sensitivity (Fig. 3.2i,j) are the 

same as in Figs. 3.2a,b, respectively. This very pure example again shows that 

observation sensitivity (Fig. 3.2k) exceeds the analysis sensitivity at the observation point 

and the background sensitivity at the observation point is large with an opposite sign (Fig. 

3.21). Everywhere else, the observation sensitivity is zero and the background sensitivity 

is the same as the analysis sensitivity and is therefore relatively small. 

The observation super-sensitivity will be further explored in the next section with 

the help of the analytical solution for a single observation. 

2.        The Analytical Solution for a Single Observation 

The single observation case of Fig. 3.2i -1 is so simple that it can be explored 

analytically. Consider a grid defined such that each point, xn , is given by nAx, -«> < n 

< oo. Assume the analysis sensitivity vector is given by 

dJ/dxa = occos (nAx/4), (3.9) 

where Ls is the horizontal length scale and a is a constant amplitude factor.  A single 

observation, with an expected observation error variance £r, is placed at a location xr. 

The background error covariance between the observation location and any analysis grid 

point (ID»,) is assumed to be given by £b2 pb(xr,xn).   The discretized SOAR function for 

the background error correlation is defined according to (3.1), i.e. 

pb(xr,xn) = (l+\xr-xn\/Lb)exp(-\xr-xn\/Lb). (3.10) 

From (2.7a), the (scalar) observation sensitivity at xr is then, 
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dJ/dy = KT dJ/dxa = e2
b (el +e>)~' a £ Q,(xr,xn)cos(.xB/Lt). (3.11) 

n=-oo 

The analysis sensitivity gradients are restricted to functions resolvable by the grid, 

or 2712^ > 2 Ax. After some manipulation, (3.11) may be re-written as 

dJ/dy = a£2
b(e2

b+E2
rT

lcos(xr/Ls)B =aE2
b(e2

b +e2
rT

lBdJ/dxa\x=Xr,        (3.12) 

where 

5 = 1+2^T (1+nAx/Z^,) exp(-nAx/Z^) cos(nAx/Ls) 
n=\ 

(3.13) 

Here, B is a non-dimensional quantity that depends on three scales: the grid length Ax, 

the analysis sensitivity length scale Ls, and the background error correlation length scale 

Z^. For this simple example, the observation sensitivity in (3.12) is proportional to 

cos(xr/Ls) and has the same functional form as the analysis sensitivity. The observation 

sensitivity BJ/dy, which becomes a scalar for a single observation, increases as the 

accuracy of the observation improves. 

Provided that 2TZI^ > 2Ax, B is an accurate trapezoidal rule approximation to the 

definite integral 

2 

Ax ^ 

and therefore, B may be approximated, as 

B «— f(l+x/Z%)exp(-x/4)cos(x/LJ)dx, (3.14) 
AY J 

Ax(l + llJL))2 
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and 

37/ay~    ^C0S(X^\2. (3.16) 

The magnitude of B in (3.15) is maximized when 4 = LJ-JZ, or when the scale 

of the analysis sensitivity and the background error correlation length are roughly similar. 

In Fig. 3.3, the B values (from (3.13)) are plotted as a function of 0<2TC4<12AX 

(abscissa) and 2Ax < 2%LS < 14Ax (ordinate). The maximum B value for a given choice 

of Ls (i.e., l^=Ls/yß) is shown as the heavy, nearly diagonal line on Fig. 3.3. 

Provided that Ls > 2Ax, and 2rcLb > 2Ax, it can be seen from (3.15) that when l^ <§: Ls, 

then B = 4Z^ /Ax. Furthermore, B (and dJ/dy) will tend to zero when 4 » 4. These 

limiting values can be seen in the plot of B in Fig. 3.3. 

To relate the B values in Fig. 3.3 to observation super-sensitivity, the definition 

of the observation sensitivity measure (3.6) is inserted into (3.15) to give 

OSM^eliel+elT'B. (3.17) 

Since super-sensitivity is defined to occur whenever OSM > 1, this will occur when 

B>l+e2
r/e2

b. (3.18) 

If the observations are perfect fe = 0), super-sensitivity occurs for B > 1. If observation 

errors are at least as large as the background errors (£, >£b), super-sensitivity does not 

occur until B > 2. For observations that are not perfect, but are more accurate than the 
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Figure 3.3. Values of the parameter B as defined in (3.13) as a function of the specified 
background error correlation length from O.lAx to 12.1 Ax (Z^; abscissa) and imposed 
height analysis sensitivity scale from 2.0Ax to 14.0Ax (Ls; ordinate).  The values of B 
from (3.13) were computed for n = 1,500. 

background (er <Eb), the threshold depends on the relative accuracy, and is somewhere 

between 1 and 2.   For typical targeting applications, B will range between 1 and 2 

implying (from Fig. 3.3) that a single observation will be super-sensitive for most choices 
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of Zj,  and Ls, except when the analysis sensitivity gradient is small-scale and the 

background error correlation length scale is very long. 

It is easy to see from Fig. 3.3 that observation super-sensitivity is more likely to 

occur for large-scale analysis sensitivity gradients (or large targets). The observation 

super-sensitivity is enhanced when the observational error is small and the background 

error characteristic scale (l^) is close to that of the analysis sensitivity (Ls). Small-scale 

analysis sensitivities (small targets) may be much less sensitive to observations, 

depending upon the relative accuracy between the observations and background, and the 

background error correlation length scale. It is important to note that although the 

observation super-sensitivity increases monotonically with Ls (provided Z%=LJ/v3), 

the same is not true for l^. 

The super-sensitivity indicated along the coastline in Figs. 3.1e and 3.2c can now 

be attributed to the similar length scales imposed for the analysis sensitivity and 

background error correlation combined with an abrupt change in observation density. 

3.        Understanding Observation Super-sensitivity 

The above discussion explains when and where super-sensitivity will occur, but 

not why. To understand why super-sensitivity occurs, consider the terms in the 

observation sensitivity equation given by (2.7a) and (2.8a), i.e., 

dJ/dy = KT BJ/dxa = (HP6H
r + R)"1 HP, BJ/dxa. 

The term HPÄH
r is the background error covariance between observation locations and 

is in observation space. The observations are assumed to be uncorrelated so that R is a 
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diagonal matrix of the observation error variances. The term HPb is the background 

error cross-covariance between the observation locations and every gridpoint. The 

spatial scale of the transposed Kaiman gain matrix Kr is determined primarily by the 

background error correlation length scale. 

The four rows of Kr corresponding to the four. different observations at 

gridpoints 51 (located on the coastline), 50 and 49 (the two observations located just 

inland from the coast), and 30 (located in the well-sampled interior) from Fig. 3.2a-d are 

shown in Figs. 3.4a-d, respectively. The magnitudes and spatial extents of the row of KT 

are much larger for the observations near the coastline (gridpoint 51) than for the interior 

observation (gridpoint 30). Moreover, the rows of the matrix are strongly asymmetrical 

for the observations on and near the coastline. The asymmetry arises due to the term 

(HPAH
r + R)"1, and is most pronounced for abrupt changes in the observation density 

(e.g., near the coastline in this example). 

The sensitivity to J for a given observation is the product of the row of Kr and 

the (Nxl) analysis sensitivity vector. This can be visualized by mentally summing, 

gridpoint by gridpoint, the product of the row of Kr (Figs. 3.4a-d) and 3//dxa  (Fig. 

3.2b). The observation sensitivity is greatest when large values of the row of Kr 

coincide with large values of the analysis sensitivity with signs such that the contributions 

to the observation sensitivity are of the same sign. 

The large values of observation sensitivity near the coastline are thus explained as 

being due to large values of analysis sensitivity combined with observations that are 

39 



Kaiman gain at gridpoint 51 
2.0 
1.5- 
1.0 
0.5 

0.0- 
-0.5- 
-1.0- 
-1.5- 
-2.0- 

(a) 

Kaiman gain at gridpoint 50 
1.5- 
1.0 

0.5 

0.0 

-0.5 

-1.0- 

-1.5- 
-2.0- 

(b) 

Kaiman gain at gridpoint 49 
2.0 n 

1.5- 
1.0 
0.5- 
0.0 

-0.5- 
-1.0 
-1.5 
-2.0 

i . i . i . i 4- 
(c) 

Kaiman gain at gridpoint 30 
1.5 
1.0 
0.5 
0.0 

-0.5- 
-1.0- 

-1.5- 
-2.0- 

JL 

(d) 

Figure 3.4. Plots of the row of the transposed Kaiman gain matrix for the observations at 
gridpoints (a) 51, (b) 50, (c) 49 and (d) 30 in Fig. 3.2c. Values are plotted as a function of 
the grid location (abscissa) and amplitude (ordinate). 

relatively isolated compared to the observations in the interior of the continent. The 

change of sign for the observation sensitivity for observation at gridpoint 50 occurs 

because the largest values in the row of Kr are negative as opposed to positive (i.e., 
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compare Fig. 3.4b to Figs. 3.4a,c). The observation sensitivity is enhanced when the 

observation errors are assumed to be small relative to the background errors. 

Consequently, the observations along the coastline have larger potential impact 

than the continental interior observations, because there are no more observations over 

the ocean. This result is independent of the synoptic flow, and observations along either 

coast will be equally valuable (given identical assumptions).    In reality, dJ/dxa  is 

strongly dependent upon the synoptic flow and significant values of analysis sensitivity 

tend to occur over the oceans for many J of interest. Therefore, if the domain of interest 

for which J is defined is in the interior of the continent, observations along the upstream 

coastline would be more valuable than on the downstream coastline. The single 

observation experiment (Figs. 3.21-1) can now be interpreted as the limiting case of a 

"good" coastline observation with very "poor" continental interior observations. 

The physical reasoning why the super-sensitivity is maximized when the analysis 

sensitivity scale is close to the background error correlation length scale may be explained 

as follows. Analysis sensitivity gradient structures such as those in Figs. 1.1a or 2.1a 

normally consist of a number of substructures or elements of opposite sign. Maximum 

sensitivity of the forecast aspect 7 to an observation occurs when the observation is 

strongly projected onto the analysis sensitivity by the adjoint of the assimilation algorithm 

(e.g, Kr). The projection of an observation by the assimilation system (through K) is 

largely controlled by the background error correlation. If the correlation model is always 

non-negative (e.g., the SOAR model of (3.1)), then the projection of the innovation for a 

single observation will have the same sign everywhere that it is non-zero.  Suppose the 
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single observation is located at the maximum or minimum of one of the substructures of 

the analysis sensitivity.    If the background correlation length  Z^  is too small, the 

influence of the observation will be only felt over part of the substructure.  If Z^ is too 

large, the influence of the observation will be spread onto adjacent substructures that may 

have the opposite sign and thus reduce the projection. Therefore, some intermediate 

value of L^ will be optimal. 

Super-sensitivity is a phenomenon that occurs when the observation density is 

low. Comparing Fig. 3.2k with Fig. 3.2c suggests that the super-sensitivity is largest for a 

single observation and diminishes as more observations are taken. It is prudent not to 

draw too many conclusions from the super-sensitivity phenomenon. Super-sensitivity 

merely indicates that the forecast aspect will be very sensitive to an observation at a 

certain location, given that the assimilation system has certain characteristics. It cannot 

be inferred that no other observations are necessary or a single super-sensitive 

observation will make a large reduction in the forecast error. In particular, a target in an 

area of the analysis sensitivity gradient with a number of substructures may require a 

number of observations to reduce substantially the forecast error. 

In conclusion, large observation sensitivity occurs due to the co-location of large 

adjoint weight (Kr) with significant amplitude analysis sensitivity gradients. In 

general, observations with large adjoint sensitivity have large (magnitude and spatial 

scale) adjoint weights that project optimally onto large analysis sensitivity gradients. 

Since the matrix Kr is the transpose of the weight matrix K in the linear analysis 
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equation (2.2), these observations will also be given large weight in the forward analysis. 

If the innovation is large, these observations will have a strong effect on the analysis. If 

the projection of Kr onto dJJdxa is optimal, the observation sensitivity will also be 

large. However, large observation sensitivity does not guarantee a large effect on the 

analysis from a given observation because that depends upon the magnitude of the 

innovation. Therefore, the observation sensitivity is a measure of the potential for an 

observation to have significant impact on the analysis in a region that is very sensitive to 

errors in the initial conditions. 

4.        Exploring the Limits of Observation Sensitivity 

The previous section showed where observation super-sensitivity is likely to 

occur, and explained why it occurs. The goal of this section is to understand how 

observation sensitivity varies as a function of the analysis parameters. The OSM (3.6) is 

used as an objective measure to illustrate this variability. The limiting behavior for 

extreme values of the parameters is also examined. 

a.        The Effects of the Background Error Correlation Length Scale 

This sub-section begins by comparing the analytical results from Fig. 3.3 

with the equivalent results from the single observation one-dimensional numerical 

example from Figs. 3.21-1. The variation of the observation sensitivity measure (OSM) as 

a function of Ij, and Ls is shown in Fig. 3.5 in the same format as in the analytical 

example in Fig. 3.3.   For the numerical calculation, the background error correlation 
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Figure 3.5. Variation of the computed height observation sensitivity measure as a 
function of the background error correlation length scale from 0.1 Ax to 12.1 Ax (4; 
abscissa) and the analysis sensitivity length scale from 2.0Ax to 14.0Ax (Ls; ordinate). 

The domain consists of 101 gridpoints, where er =0.0 and eb =1.0. 

length scale is restricted to vary between 0.1 Ax and 12Ax. The analysis sensitivity 

gradient for any given L5 is restricted to one complete cosine wave, and is set to zero 
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outside this range.   The gridlength Ax is the same for all values of Ls. These restrictions 

were required to minimize the computational effects arising from the finite grid spacing 

and finite domain. A single observation (which is assumed to be perfect) is placed at the 

center of the analysis sensitivity gradient maximum. 

Overall, the analytical (Fig. 3.3) and computational results (Fig. 3.5) 

compare very well. The computational relationship between Ls and L,, at the maximum 

observation sensitivity very closely follows the analytically derived relationship (e.g., 

Ij, = LJy/3 ~ 0.58LJ.  Minor differences are found for correlation length scales longer 

than the maximum given by 1^ = Ljyß, and are due to the finite grid domain of the 

computational example. Minor differences are also found for Z^ < lAx. Super-sensitivity 

for the single observation (B>1) exists over most of the domain, except for Ls =2Ax 

when I,, = 4 Ax. 

The variation of the OSM over the larger range of Z^ from 0.25Ax to 

25.25Axin increments of 0.25Ax (with Ls = 5.31 Ax) is shown in Fig. 3.6. A single 

observation is placed at a gridpoint in the center of the domain at the local maximum of 

the analysis sensitivity gradient. The observation is assumed to be perfect, and the 

background error variances are equal to 1.0. The solid curve in Fig. 3.6 is the computed 

observation sensitivity measure (from (3.6) and (3.12)), and the dotted line is the 

analytical approximation to observation sensitivity measure (from (3.6) and (3.16)). The 

observation sensitivity measure reaches a maximum value near the theoretical maximum 
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Figure 3.6. Variation of the height observation sensitivity measure (ordinate) as a 
function of the background error correlation length scale from 0.25Ax to 25.0Ax (Z^; 

abscissa) for 4=5.31^. The solid curve is the computed observation sensitivity 

measure from (3.6) and (3.12), and the dotted line is the analytical approximation to 
observation sensitivity measure from (3.6) and (3.16). The dashed lines at ±1.0 are the 
threshold values for observation super-sensitivity. 

of 1^ = 3.06Ax, decreases toward zero when l^ is large, and approaches one for small 

Zj,.  The computed OSM (solid curve) is larger than the analytical OSM (dashed curve) 
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for L,, greater than about 8.75Ax, where the analytical curve approaches zero faster than 

the numerical solution. This difference arises because 1^ is becoming long compared to 

the finite grid domain, whereas the analytical solution does not have a boundary effect. 

In Fig. 3.6, the single observation is assumed to be perfect, so that OSM = 

B from (3.17). However, B ~ 4 U /Ax when Lb « Ls (but 2JC U >2AX) and B -> 0 when 

L,, »Ls.    The numerical OSM solution in Fig. 3.6 generally follows these limits for the 

long and short background error correlation length scales. 

The limiting case for Lb -> 0 and £r —> 0 corresponds to the vector a in the 

denominator of the OSM (3.6), and OSM =1. If the observation is assumed to be 

imperfect and Lb —> 0, then the observation sensitivity parameter OSM = 8b2 (£b2 + fir2)"1- 

Since £r is greater than zero, the OSM is always less than one. Therefore, observation 

super-sensitivity cannot occur for either perfect or imperfect single observations as 

*»->o. 

The OSM limit for Lb —> °° can be derived analytically as follows. 

Assume that there are M observations and N gridpoints. The observation error variances 

z2
r are assumed to be spatially homogeneous so that R = £*I, where I is the M x M 

identity matrix. Next, assume that HP^H7 may be expanded using an eigenvector 

expansion, or HPfeH
r =edEDEr£fc, where D is a diagonal matrix, EEr=I, and the 

background error variances z\ are assumed to be spatially homogeneous. Thus, the 

matrix A and its inverse A"1 may be defined as 
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A = (HP,Hr + R) = e2EDET + e2I=E(e2D + e2l)Er, (3.19a) 

and 

A"1 = (HP,Hr +R)-1 = E(£2D + e2l)_1 Er, 

where (e^D + e2!) is a diagonal matrix. In the limit as 1% ->oo, 

(3.19b) 

D = 

M     •••    0 

0     -    0 

(3.20a) 

and 

E = 
A/M 

a 
4M 

(3.20b) 

where the leading eigenvalue equals M and the leading eigenvector is given by 

er=(l/._  Vr—     Vr—\-     The trailing eigenvalues equal  zero,  and the trailing 
■   \/JMVJM

,
'"VJM ) 

eigenvectors   are  given  by  the   (M-l)   x   M  matrix   a.     For  a  2x2  problem, 

'4M~/4M)'    
US

' 
a  = 

A = 
4M 

a 

4M 

Me2
b+e2

r 

0 

and 

0 1/ 1/ 
74M      74M 

T 

a 
(3.21a) 
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A-' = 
VM 

a 

W 

(Me2
b+e2

r) 

0 

■Xr, 4M  '" /4M 

a 
(3.21b) 

Equation (3.22) may be rewritten as 

A~l=E 

\Me2
b+e))   /e) 

...   o 

0 

Er+E 
y< 

0 

0 

E7 

(3.22) 

1 1 

M(Me,+e;)   Me; 
1   ■••   1 

+?L 

Because all elements of HPb are equal to one in the limit as 1^ -» °°, 

HR 
dJ 

dx. 
= et 

N 

(3.23) 

M 

Moreover, since all the elements of (3.23) are equal, the observation sensitivity vector of 

length M may be written as 

37 
dy    {Mel+e)) la//ax. 

(3.24) 

According to (3.24), the observation sensitivity limit (as l^ —»°°) for the 

m~ observation is proportional to the sum of the gridpoint values of the analysis 

sensitivity gradient over the domain.   The imposed analysis sensitivity gradient for the 

49 



one-dimensional examples in this section was chosen so that the sum of the gridpoint 

values of the analysis sensitivity gradient is zero. The forecast aspect J used for 

targeting applications generally produces analysis sensitivity gradients that sum to zero 

over the global domain. However, some choices of J may not sum to zero over the 

global domain (R. Langland, NRL-Monterey, personal communication). Thus, 

observation sensitivity values in the limit as 1^ -»<» may be quite different depending 

upon the choice of J. Other important implications of (3.24) will be discussed in 

Chapter HLE. 

b.        The Effects of the Observation Error Variances 

The analytical approximation to the observation sensitivity (3.17) indicates 

that super-sensitivity (OSM > 1) for a single observation occurs when B > 1 + £r2/£t,2. 

The variation of the OSM is shown in Fig. 3.7 as a function of the background error 

correlation length scale L^ and the ratio of the observation error standard deviation to the 

background error standard deviation (e/8b) over a range from 0.0 to 3.0. The analysis 

sensitivity length scale is fixed at Ls = 5.31 Ax and the range of the background error 

correlation length scale is from 0.1 Ax and 12.1Ax. The observation sensitivity is 

maximized for a perfect observation when L,, =Ls/v3 =3.06Ac. Observation sensitivity 

decreases as the ratio of the observation error to the background error increases. Perhaps 

the most interesting result from Fig. 3.7 is the occurrence of super-sensitivity for poor- 

quality observations. For example, when 1^ equals the value that maximizes observation 

sensitivity, a single observation is super-sensitive even if er/eb is nearly as large as 2.5. 
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This troubling result implies that the forecast aspect (for example, forecast error) could be 

highly sensitive to an isolated poor quality observation in regions with large sensitivity to 

the initial conditions. This issue will be discussed in detail in Chapter IV. 

12.1AX 

Figure 3.7. Variation of the height observation sensitivity measure as a function of L^ 
(abscissa) and the ratio of the observation error standard deviation £r to the background 
error standard deviation £b (ordinate). The analysis sensitivity length scale is fixed at 
1^=5.31^ while £r/eb  ranges from 0.0 to 3.0, and Z^ varies between 0.1 Ax and 

12.1Ax. 
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The variation of the OSM as a function of Ls and £/£b over a range from 

0.0 to 3.0 is shown in Fig. 3.8, in which the background error correlation length scale is 

fixed at Z^ = 6.0Ax, while Ls varies from 0.1 Ax and 12.1 Ax. The observation sensitivity 

increases as the analysis sensitivity length scale Ls increases, and decreases as the 

magnitude of the observation error increases relative to the background error. These 

results are consistent with (3.16). Thus, super-sensitivity is more likely to occur for 

observations that are assumed to be accurate relative to the background and when the 

analysis sensitivity gradient is large-scale. 

5.        Univariate Wind Observation Sensitivity 

The previous sub-sections have examined how the observation sensitivity varies 

as a function of the background correlation length scale, the analysis sensitivity length 

scale and the ratio of the observation error to the background error variances. The SOAR 

function used for the above examples is appropriate for geopotential heights or 

temperatures, but not for winds. A SOAR correlation function for one-dimensional 

univariate winds derived following Daley (1991, section 5.2) is given by 

pn(r) = (l-r/Lb)exp(-r/Lb), (3.25) 

where r is given by (3.2). 

The series of experiments conducted for univariate one-dimensional heights is 

repeated to examine the observation sensitivity for the univariate wind problem. The 

52 



14AXr 

2AX1""""11 i niiiininiiniiiiiiiiiiiiiin i inn iiiiiinii mini in ml 

o l.o        Er/Eb        2.0 3.0 

Figure 3.8.  Variation of the height observation sensitivity measure as a function of the 
ratio er/eb  from 0.0 to 3.0 (abscissa) and Ls from 2.0Ax to 14.0Ax (ordinate) for 
Lb=6.0Ax. 

one-dimensional coastal case is presented in Fig. 3.9a-d.  The wind analysis sensitivity 

gradient (Fig. 3.9b) is modeled using the cosine function from Fig. 3.2b with Ls = 5.3 lAx. 

The background error correlation with a length scale l^ of 4.5Ax is plotted in Fig. 3.9a. 
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Figure 3.9. As in Fig. 3.2, except for examples of super-sensitivity for the one- 
dimensional univariate wind coastal (a-h) and single observation (i-1) analysis system. 
The background error correlation functions for an observation at gridpoint 51 and (a,i) 
Lf, = 4.5A*, and (e) 4 = 9.0Ax, (b,f,j) the imposed analysis sensitivity gradients with 
Ls=5.31Ax, (c,g,k) the observation sensitivities, and (d,h,l) the background error 

sensitivities. The domain consists of 101 gridpoints, where er =0.0 and eb =1.0. Values 
are plotted as a function of the grid location (abscissa) and amplitude (ordinate). 
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A wind observation is located at every gridpoint left of (and including) point 51. 

For both the wind and height univariate problems, the observation sensitivity is zero over 

the oceans (because there are no observations) where the background sensitivity equals 

the analysis sensitivity. There is no sensitivity to the background over land areas for 

either the wind (Fig. 3.9d) or height (Fig. 3.2d) examples. 

For wind observations, super-sensitivity exists for the observation on the coast 

and has the same sign as the analysis sensitivity gradient at this location. In contrast, 

recall the observation sensitivity for height observations (Fig. 3.2c) oscillates from 

positive to negative and back again for the three observations near the coast. The 

behavior of the height observation sensitivity at the coastline was shown in Fig. 3.4 to be 

due to differences in the structure of KT for the univariate height example. A similar 

explanation for the large observation sensitivity in this case (not shown) can be made 

from examination of the rows of Kr for the coastal wind observations. 

When the background error correlation length is doubled (Fig. 3.9a where 

Ik = 9.0Ar), the observation super-sensitivity along the coast is larger (Fig. 3.9g vs. Fig. 

3.9c). Likewise, the background sensitivity at the coast (Fig. 3.9h) is larger when Lb is 

larger. This greater super-sensitivity trend differs from the univariate height example of 

Fig. 3.2, where the observation sensitivity decreased as Lb increased. Consequently, a 

different relationship exists between observation sensitivity and Lb for univariate winds 

and heights. 
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The observation sensitivity results for a single observation at gridpoint 51 (and 

L,, = 9.0Ax) are shown in Figs. 3.9 (i-1). The single observation sensitivity is larger than 

the sensitivity for the coastal observation (Fig. 3.9g) for the same value of l^.   This 

single observation experiment can be treated analytically following the procedures used 

for a single height observation (3.12-3.16). 

a. The Analytical Solution for a Single Wind Observation 

The discretized form of the SOAR correlation function for univariate 

winds is given by 

ft (xrJxB) = (l-|xr-xn|/Lb )exp(-|xr-xn|/Lb). (3.26) 

The wind correlation model is similar to the height correlation model (3.10) except for a 

sign change between the first two terms, which produces negative side lobes for the 

correlation function. 

The analysis sensitivity gradient is given by (3.7). The derivation of the 

analytical approximation to the observation sensitivity follows the procedure in (3.12) - 

(3.16). The resulting expressions are not the same due to the sign difference in the 

background error correlation models (3.10) and (3.25). 

The analytical approximation to the observation sensitivity analogous to 

the height observation sensitivity problem in (3.16) may be written 

dJ/dy=      ^Xcos(Xr/Ls) (327) 

(e2
b+e;)AxL](l+ll/L2

s) 
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The magnitude of dJ/dy in (3.27) is maximized when Lb=y/3LS = 1.73LS. In contrast, 

for a single height observation, the magnitude of dJ/dy (from 3.16) is maximized when 

Ij, =Ls/^3. This difference is due to the sign change between the height and wind 

correlation functions (see (3.10) and (3.25), respectively). Assuming that Ls >2Ax and 

2^-Zj, >2Ax,  dJ/dy will tend to zero when Z^ »4. Also dJ/dy tends to zero when 

L„«LS. 

Applying the definition of the observation sensitivity measure (3.3) to 

(3.27) gives 

,2 r3 

OSM = ^^ =-. (3.28) 

The observation sensitivity measure is maximized when Ij, is approximately twice Ls 

(i.e.,  L,, = y/3Ls), and the observations are assumed to be accurate relative to the 

background. 

b.        The Effects of the Length Scales l^ and Ls on the Observation 

Sensitivity 

The computed (not analytical) observation sensitivity measures for a single 

wind observation placed at the maximum of the analysis sensitivity gradient are plotted in 

Fig. 3.10 in the same format as Fig. 3.5.   The observation error variance is set to zero, 

while the background error variances are spatially homogeneous and equal to 1.0.  The 

primary difference between the height univariate (Fig. 3.5) and wind univariate (Fig. 

3.10) results is that the relationships between the maximum observation sensitivity, and 
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Figure 3.10.   As in Fig. 3.5, except for variation of the wind observation sensitivity 
measure as a function of the background error correlation length scale (l^; abscissa) and 
the analysis sensitivity length scale (1^; ordinate).  The length scale Ls varies between 
2.0Ax and 14.0Ax, and Z^ varies between 0.1 Ax and 12.1 Ax. 

I,, and Ls are not the same. The OSM for a single wind observation (Fig. 3.10) is largest 

for intermediate values of Ls, while the OSM for a single height observation in Fig. 3.5 
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increases monotonically with increasing Ls. The analytical relationship between the 

maximum single wind observation sensitivity and 1^ (e.g., Ij, = y/3Ls) is given by the 

nearly diagonal, heavy line in Fig. 3.10. The computed single wind observation 

sensitivities compare less favorably with the analytical limit than the single height 

observation sensitivities (e.g., Fig. 3.3). The differences are likely due to the finite grid 

resolution, and the narrow central peak for the univariate wind correlation function (e.g, 

Figs. 3.9a,e,i). 

The variation of the single wind observation sensitivity measure as Ij, 

ranges from 0.25 Ax to 25.25 Ax with Ls =5.3lAx is shown in Fig. 3.11.   The solid line 

represents the computed results while the dotted line shows the approximation to the 

analytical results given by (3.29). The largest discrepancy for the approximation to the 

analytical results in (3.29) occurs when l^ is small .and the approximation, which 

required that 2nLb> 2Ax, is no longer valid. When L^« Ls (and 2izLb> 2Ax), the OSM 

decreases below 1.0 and tends towards zero, which is consistent with (3.27). This 

tendency differs from the height example (Fig. 3.6) in which the OSM remains greater 

than or equal to 1.0 as 1^ -» 0. When 1^ = 0, the OSM = 1, for both the single wind and 

the single height observation, as predicted. The maximum OSM occurs near l^ = 9.0Ax 

as predicted. 
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Figure 3.11. As in Fig. 3.6, except for variation of the wind observation sensitivity 
measure (ordinate) as a function of the background error correlation length scale from 
0.1 Ax to 12.1 Ax (4; abscissa) for Ls =5.31Ax. The solid line represents the computed 

observation sensitivity while the dotted line shows the approximation to the analytical 
value given by (3.28). The dashed lines at ±1.0 are the threshold values for observation 
super-sensitivity. 
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The computed result for small l^ can be explained as follows. The SOAR 

wind correlation function (see Fig. 3.9a) has negative side lobes, unlike that of the height 

SOAR correlation function (Fig. 3.2a).  When l^ is optimal, the negative side lobes of 

the correlation function (and hence KT) project efficiently onto the negative side lobes of 

the analysis sensitivity gradient, which increases the observation sensitivity. When 1^ is 

small, both the main positive and secondary negative side lobes of the wind correlation 

model (and Kr) project on the main positive maxima of the analysis sensitivity gradient, 

which reduces the observation sensitivity. If the background error is uncorrelated (l^ = 

0) and the observation is perfect, the correlation (and Kr) equal one at the observation 

location and are zero elsewhere so that the observation sensitivity equals the analysis 

sensitivity gradient at that location, as given by the vector a in (3.6). These results 

indicate that the approximation given by (3.27) in Fig. 3.11 does not give correct results 

for small Z^. 

According to Chapter IH.C.4.a, the OSM should decrease to zero as 

Iß -» oo. Experiments (not shown) indicate that this does occur, but that the maximum 

value L,, = 25.0A* plotted in Fig. 3.11 is too small to show this effect. 

c.        The Variation of the Observation Sensitivity as a Function of L^ 
and Observation Error 

The variation of the wind OSM as a function of 2^, and e/Eb is plotted in 

Fig. 3.12 in the same format as the height OSM in Fig. 3.7.   The analysis sensitivity 
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Figure 3.12. As in Fig. 3.7, except for variation of the wind observation sensitivity 
measure as a function of L,, (abscissa) and the ratio of the observation error standard 

deviation (£,-) to the background error standard deviation (et>) (ordinate). The analysis 
sensitivity length scale is fixed at Ls =5.31Ax while £r/eb ranges from 0.0 to 3.0, and 

L,, varies between 0.1 Ax and 12.1 Ax. 
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length scale is fixed at Ls = 5.31AJC while zjz^ ranges from 0.0 to 3.0, and l^ varies 

between  0.1 Ax  and   12.1 Ax.  Notice  the  observation  sensitivity  decreases  as  the 

observation error increases relative to the background error.     Maximum observation 

sensitivity occurs when the observation is perfect and/or Z^ = 9.0Ac (i.e., 1% is close to 

the predicted maximum value). 

d.        The Variation of the Observation Sensitivity as a Function of Ls 

and Observation Error 

This experiment (Fig. 3.13) examines the variations of the OSM for a 

single wind observation as a function of Ls and eje^ and is analogous to the height OSM 

in Fig. 3.8. For this case, l^ = 6.0Ax while Ls varies between 2Ax and 14Ax and e^Eb 

ranges from 0.0 to 3.0. The value of 1^ was chosen to give as comparable as possible 

results for both the height and wind correlation models. The observation sensitivity is 

largest when the observations are perfect fe = 0) and decreases as e,/£b increases. The 

wind OSM is also maximized when Ls = 1^. This result may be derived by setting to 

zero the derivative of dJ/dy (from (3.27)) with respect to Ls and solving for Ls. 

6.        Observation Density and Observation Sensitivity 

Thus far, this section has mostly focused on single observation sensitivity. Since 

observations in atmospheric modeling applications seldom occur in isolation, the 

behavior of the OSM as a function of observation density and background error 

correlation length is examined. The experimental design is the same as for the earlier 

examples, except that the observation density varies from an observation located at every 
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Figure 3.13. As in Fig. 3.8, except for variation of the wind observation sensitivity 
measure as a function of the ratio of the observation error standard deviation (£,-) and the 
background error standard deviation (£t>) (abscissa) and Ls (ordinate). For this case, 
Zfc = 6.0Ax while Ls varies between 2.0Ax and 14.0Ax and zrjzb ranges from 0.0 to 3.0. 

gridpoint to observations separated by 30Ax. The observation sensitivity measure for the 

observation located at gridpoint 51 is shown in Fig. 3.14. The observation sensitivity 

measure increases until l^ is sufficiently large that the observation begins to interact with 
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Figure 3.14. Variation of the height observation sensitivity measure (ordinate) as a 
function of 1^ (abscissa) and the distance between the observations. The curves are for 
observations placed (a) lAx, (b) 2Ax, (c) 3Ax, (d) 5Ax, (e) lOAx, (f) 15Ax, (g) 16Ax, (h) 
17Ax, (i) 18Ax, (j) 20Ax, (k) 30Ax apart. The dotted curve is for the analytical 
approximation to observation sensitivity measure from (3.6) and (3.16). l^ varies 
between 0.25Ax and 25.25Ax, and L = 5.3lAx. 
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the neighboring observations and the OSM is maximized. Once the maximum OSM is 

reached, the behavior of the OSM as  l^  continues to increase depends upon the 

observation density. If an observation is at every gridpoint, the OSM is constant and 

super-sensitivity does not occur. When the observations are dense, the OSM remains 

nearly constant for further increases of 1%. When the observation density is low, the 

OSM curve is similar to that of a single observation (the dashed curve) and the OSM 

decreases as  l^  increases.    This difference can be explained as follows.    If the 

observations are widely spaced and 1% is large, the projection of Kr onto d//3xa 

includes negative contributions from the negative side-lobes of the analysis sensitivity 

gradient (Fig. 3.2b), which thereby reduces the observation sensitivity. Conversely, 

when the observations are closely spaced, Kr is localized and the contributions from the 

projection of Kr   onto BJ/dxa   are primarily from the positive analysis sensitivity 

gradient maxima. 

7.        Summary of One-Dimensional Univariate Observation Sensitivity 

The results in this section have demonstrated that the behavior of the observation 

sensitivity depends upon length scales of the background error correlations and the 

analysis sensitivity gradients, the ratio of the assumed observation error variance to the 

assumed background error variance, and the observation density. 

Observation sensitivity is maximized when the observation is strongly projected 

onto the analysis sensitivity gradient by the adjoint of the assimilating algorithm (e.g., 

Kr).    This maximum observation sensitivity occurs when the length scales of the 
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background error correlation and the analysis sensitivity gradient are similar and the 

observations are assumed to be accurate relative to the background. Thus, when the 

background error correlation spectrum is assumed to be red (I^is large), observation 

sensitivity is greater for large-scale targets than for small-scale targets. Conversely, 

background sensitivity is greater for small-scale targets. 

Observation and background super-sensitivity is a phenomenon that can occur 

when the density of the observations is low, or there is an abrupt discontinuity in the 

observation density. It was shown that Kr is largest (both in spatial scale and 

magnitude) when an observation is relatively isolated, so that the projection of Kr onto 

the analysis sensitivity gradient is maximized. 

The observation sensitivity is independent of the observation density when l^ is 

small, and strongly dependent upon the observation density when Z^ is large, which 

indicates that the general behavior of the OSM as a function of l^ is more complicated 

than the single observation results (Fig. 3.6) would suggest. 

While the results for univariate single wind observation differ in detail from the 

univariate single height observation results, the same general conclusions can be drawn. 

The observation sensitivity in both cases is larger for large-scale analysis sensitivity 

patterns and accurate observations and is smaller for small-scale patterns and poor 

observations. 
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D.       ONE-DIMENSIONAL MULTIVARIATE OBSERVATION SENSITIVITY 

The purpose of this section is to investigate observation sensitivity in a one- 

dimensional multivariate context. The two variables considered are the geopotential 

height and the component of the wind perpendicular to the axis defining the one- 

dimensional grid. For the examples in this section, the grid is defined to be in the x- 

direction or east-west direction, so that the wind component normal to the axis is the v- 

wind component. 

1.        Theoretical Considerations 

a.        The Cross-Correlation Contribution to Multivariate Observation 
Sensitivity 

The previous section (Chapter DI.C) considered univariate examples only, 

in which sensitivities of J to the observations are given by (2.7a) and the variables y and 

xa are the same. The sensitivity of J to the observations in a one-dimensional 

multivariate setting includes contributions due to the cross-correlations between height 

and v-wind observations and height and v-wind analysis sensitivity gradients. 

The total sensitivity of J to the height observations is defined as the sum 

of the partial sensitivities and is given by (2.16a). Likewise, the total sensitivity of J to 

the v-wind observations is given by (2.16c). Only one type of observation (height or 

wind) will be considered at a time to isolate the cross-correlation contribution to the 

multivariate observation sensitivity. Under this assumption, 

ay/8h0=KL,Äay/aha+KiA>v97/ava, 0.29a) 

and 
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dJ/dv0 = K^k dJßha +K^V dJ/dva. (3.29b) 

where the subscript notation from (2.17) is used. The first term in (3.29a) involves only 

the height observations and the height analysis sensitivity gradient, and is identical to the 

univariate height relationship in (2.16a). The last term in (3.29a) is the cross-correlation 

contribution to the total sensitivity. Similarly, the last term in (3.29b) is identical to the 

univariate wind relationship in (2.16c), and the first term represents the cross-correlation 

contribution to the total observation sensitivity. 

Equations (3.29a) or (3.29b) contain terms involving both the height and 

wind analysis sensitivity gradients. The use of these equations in an idealized setting 

would require a priori knowledge about the magnitude and phase of dJ/dha relative to 

dJ/d\a. While the geostrophic relationship will be used to scale the wind variances 

relative to the height variances, no such clear-cut relationship exists to define the relative 

magnitudes of the height and wind analysis sensitivity gradients. Therefore, only the 

height/wind cross-correlations terms in (3.29) are considered in this section, and the 

results are intended solely to illustrate the behavior of this cross-correlation component of 

multivariate observation sensitivity. The total observation sensitivity, as represented by 

(2.16a-c), will be discussed in Chapter IV using the NAVDAS adjoint. With these 

restrictions, (3.29a) and (3.29b) are reduced to 

ay/ah0=KL,a//dv0, (3.30a) 

dJ/dy0=KithdJßha. (3.30b) 
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The term height/wind observation sensitivity (as given by (3.30a)) will be 

used to indicate the sensitivity of / to height observations, given the wind analysis 

sensitivity gradient. Likewise, the term wind/height observation sensitivity (as given by 

(3.30b)) is used to indicate the sensitivity of J to wind observations, given the height 

analysis sensitivity gradient. 

Since HP^H7 (from (2.6)) is in observation space, the correlation models 

used to construct that term are the height-height SOAR and the wind-wind SOAR 

correlation models as in (3.1) and (3.25), respectively. Let £h2 represent the background 

geopotential height error variances and £v
2 represent the background wind error variances. 

The covariance functions are given by 

(ÄÄ) = e^(jc), (3.31a) 

(w) = efe,(x).     . (3.31b) 

The coupling between the height and the wind field occurs because of the 

term HPb in Kr, where Pb represents the background error covariance, and H is the 

interpolation operator between observation space and analysis space1. The geopotential 

height-wind background error correlations and proper scaling of the error variances can 

be derived using the geostrophic assumption and the f-plane assumption, so that 

v = ydh/dx, (3.32) 

1 Cross-correlations between heights and winds also occur due to (HP6H
r + R) ' in the 

terms not considered in (3.30). 
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where y=g/f0 (gis the gravitational constant, and f0 is the Coriolis constant defined at 

45° N).       The background wind error variances may be estimated in terms of the 

geopotential height error variances, or 

<=fAIZ- (3.33) 

The height-wind and wind-height covariance functions are derived by 

substituting the geopotential height correlation function (3.31a) into (3.32), so that 

(hv} = -ye2
hphv/^ =-Y£^exp(-|x|/Z%)/4, (3.34a) 

and 

{vh) = yelpjLb=ye2
hxtxp(-\x\/Lb)/ll, (3.34b) 

where x represents the distance between the two locations of interest.  This derivation 

assumes that the errors are homogeneous, isotropic, and geostrophic. 

b.        Multivariate Background Sensitivity 

The experiments in this section have been restricted to considering only 

the cross-correlation component of the observation sensitivity and one observation type at 

a time. With these restrictions, (2.18) and (2.19) reduce to 

dJ/dhb = dJ/dha-KT
vK

T
vvMdJ/dha =dJ/dha-nT

vdJ/dv0, (3.35a) 

a//9v, =dJ/dya-BT
hK

T
hhtVdJ/dya =dJ/dva-HT

hdJ/dh0. (3.35b) 

where K has been expanded following the notation introduced in (2.17). The univariate 

equivalent of (3.35a) is given by 
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a//3h4=a//dha-Hj[KjMa//ahiI=a//aha-Hj[a//ah0.   Comparison   of  the   two 

equations indicates that the behavior of the cross-correlation component of the 

multivariate background sensitivity should be analogous to the univariate background 

sensitivity, provided that H is a simple interpolation operator. For this reason, the cross- 

correlation component of the background sensitivity is not discussed for these idealized 

multivariate examples. 

c. Objective Multivariate Observation Sensitivity Measures 

The observation sensitivity measure (OSM) for the multivariate 

height/wind problem may be derived by substituting (2.16a) into (3.6). Since the terms 

involving cross-correlations are zero as Lb -» 0, the vector a reduces to the univariate 

component, K^ h dJ/dh^1*^. Under the restrictive assumptions used in this sub-section, 

the vector o from (3.30a) is equal to K^ v d//3va so that the OSM due to the cross- 

correlation terms is 

OSM=    K^a//3V°    ■ (3.36) 
KL,a//9ha|^ 

The vector o in (3.6) requires the analysis sensitivity gradient for v-component winds, 

while the vector a requires the analysis sensitivity gradient for heights. Use of the OSM 

in the idealized setting of this sub-section would again require an a priori knowledge of 

the relationship between height and wind analysis sensitivity gradients. For this reason, 

the OSM as defined by (3.6) is not used in this section. Since the purpose of this section 

is to merely illustrate the height/wind and wind/height components of the multivariate 
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observation sensitivity, this is not a serious limitation.   In general, there should be no 

problem in computing the OSM for multivariate problems involving real analysis 

sensitivity gradients (e.g., those involving the NAVDAS adjoint). 

2.        Wind/Height  and   Height/Wind  Observation   Sensitivity   along  a 
Coastline 

The experimental framework from the one-dimensional coastal case of Chapter 

m.C.1 is used here to compute, following (3.30a,b), the sensitivity of J  to wind 

observations given the height analysis sensitivity gradient (Fig. 3.15) and the sensitivity 

of J to height observations given the wind analysis sensitivity gradient (Fig. 3.16).   A 

few minor changes to the experimental design were made and will be noted where 

appropriate.    The analysis sensitivity gradients for both the height (Fig. 3.15b) and wind 

(Fig. 3.16b) are given by acos(x/Ls) where Ls =5.31Ax and oc = l. This value of Ls is 

chosen to give an odd number of waves across the domain so that the gridpoint values of 

dJ/dxa sum to zero. This choice ensures that the computational results are comparable 

with the analytical results for an infinite domain. 

In contrast to the univariate examples, an observation is placed at every gridpoint 

to the left of (and including) gridpoint 43. The reason for this new choice of a coastline 

will become apparent shortly. The observations are either v-component winds or 

geopotential heights. The observation error variances over land are set to 1% of the 

background error variances, which prevents the matrix inverse in (2.6) from becoming 

singular. 
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Figure 3.15. As in Fig. 3.9, but for for the one-dimensional wind/height multivariate 
coastal (a-f) and single observation (g-i) analysis system. The wind/height background 
error correlation function for an observation at gridpoint 51 and (a) l^ =4.53Ax, and 
(d,g) 1^=9.06^, (b,e,h) the imposed height analysis sensitivity gradients with 

Ls =5.31Ax, and (c,f,i) the wind/height observation sensitivities. The domain consists 

of 101 gridpoints, where er =0.01 and eb =1.0. Values are plotted as a function of the 
grid location (abscissa) and amplitude (ordinate). Note the special range of ±52.0 for the 
ordinate in (c,f,i). 
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Figure 3.16. As in Fig. 3.2, except for examples of observation sensitivity for the one- 
dimensional height/wind multivariate coastal (a-f) and single observation (g-i) analysis 
system. The height/wind background error correlation function for an observation at 
gridpoint 51 and (a,g) 1^=4.53 Ax, and (d) i,,=9.06Ax, (b,e,h) the imposed wind 
analysis sensitivity gradients with Ls =5.31Ax, and (c,f,i) the height/wind observation 

sensitivities.   The domain consists of 101 gridpoints, where er=0.01 and £fe=1.0. 
Values are plotted as a function of the grid location (abscissa) and amplitude (ordinate). 
Note the special range of ±2.0 for the ordinate in (c,f,i). 

The background wind error variances are scaled using (3.33) with g = 9.8 m s"2, 

and the f-plane assumption with f0 = lxlO"4 s"1, and the value for L,, from NAVDAS 

(Z^ = 3.85 x 105 m; see Chapter IV.A), so that 

ev=0.25e„. (3.37) 
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A grid spacing of Ax = 8.5 x 104 m is arbitrarily-assumed. Using this grid-spacing along 

with I,, = 3.85 x 105 m implies that L,, = 4.53Ax. When 4 is allowed to vary, the scaling 

between the height and wind variances will vary accordingly. In this case, 

ev=y£A/(CAx) = 1.15£A/C, (3.38) 

where C is an arbitrary scaling constant. The background error covariance functions are 

given by (3.31) and (3.34). The wind-height and height-wind background error 

correlation functions (HPt) are shown in Figs. 3.15a,d,g and 3.16a,d,g, respectively. 

The wind/height observation sensitivity, with L,, = 4.53Ax, is shown in Fig. 3.15c. 

The counter-example for the height/wind • observation sensitivity gradient, with 

Lh=4.53Ax, is shown in Fig. 3.16c. The wind/height and height/wind observation 

sensitivities for a much longer background error correlation length scale (4 =9.06Ax) 

are shown in Figs. 3.15f and 3.16f, respectively. 

The most notable difference between this example (Figs. 3.15, 3.16) and the 

univariate coastline case (Figs. 3.2, 3.13) is that large values of observation sensitivity (in 

Figs. 3.15, 3.16) are found along the coastline even though the analysis sensitivity 

gradients are zero at that point. Closer comparison of Figs. 3.15 and 3.16 indicates that 

the observation sensitivity is a maximum where the analysis sensitivity gradient is zero, 

and is zero where the analysis sensitivity gradient is a maximum. In other words, the 

observation sensitivity is phase-shifted by 90° with the analysis sensitivity gradient. 

Moreover, the phase shift is in the positive x-direction for height observations and is in 

the negative-x direction for the wind observations.   For the univariate examples, the 
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analysis sensitivity gradient and observation sensitivity are in phase, and the maximum 

observation sensitivity occurs where the analysis sensitivity gradient is also a maximum. 

The reasons for these phase shifts will be explained in the next section. 

The sensitivities of J to a single wind or height observation placed at gridpoint 

43 are shown in Figures 3.15i and 3.161, respectively. The value of l^ is 4.53Ax in Fig. 

3.151 and 9.06Ax in Fig. 3.16i. These two choices for Lb correspond to the examples with 

the larger observation sensitivity for the coastal cases (Figs. 3.15 and 3.16). In both 

examples, the observation sensitivity is larger for the single observation than for the 

observation located at the coastline because Kr is larger for a single observation (i.e., an 

isolated observation has more independent information than one with nearby neighbors 

and is therefore given more weight in an analysis or adjoint sensitivity problem). 

3. The Analytical Solutions for a Single Height or Wind Observation 

The reason for the phase shift between the maximum values of the wind (height) 

analysis sensitivity gradient and the height (wind) observation sensitivity can be 

understood by considering the analytical derivation for a single observation. The 

procedure follows that of Chapter m.C.2. The sensitivity to a single wind observation, 

given the height analysis sensitivity gradient, is examined first. 

Consider a grid defined such that each point, xn, is given by nAx, -°° < n < °o. 

The analysis sensitivity vector is given by (3.9). A single wind observation, with an 

expected observation error variance ev0, is placed at a location xr. Using (3.34b), the 

projection of the background error covariance into observation space (HP^,) for an 
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observation located at xr may be written as y^2
hpvh(xr,xn)/ll, where J=g/f0-   The 

analytical approximation to the observation sensitivity is derived following the 

procedures in (3.12) and (3.15), and may be written 

dJ/dy=     r ,4ffi    ,-.sinfo/L,)-^ i-r-=-, (3.39) 

The most striking difference between the wind observation sensitivity given the 

height analysis sensitivity gradient (3.39), and univariate wind observation sensitivity 

(3.27) is that dJ/dy, which is proportional to sin(xr/Ls), has the same functional form 

as the analysis sensitivity gradient (3.9), but is phase-shifted by 90°. The analysis 

sensitivity gradient and the univariate wind observation sensitivity were in phase. This 

phase shift explains why the wind observation sensitivity is a maximum when the height 

analysis sensitivity gradient is zero, and also provides the motivation to place the 

coastline at gridpoint 43 (at a zero crossing of the height analysis sensitivity gradient) 

instead of gridpoint 51 (at a local analysis sensitivity gradient maximum). 

The magnitude dJ/dy in (3.39) is maximized when 1^ =V3LS -1J3LS. The 

relationship between maximum observation sensitivity, l^ and Ls is the same as was 

derived for the wind-wind correlation model, even though the expression for dJ/dy is 

not the same (cf. (3.27)). Assuming that the scale of the analysis sensitivity is greater 

than two grid-lengths, it can be seen that when l^ » Ls, then dJ/dy will tend to zero. In 

addition, dJ/dy will also tend to zero when l^^L^ 
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Consider the simple example when dJ/dy is maximized (i.e., l^ = yJ3Ls). Then, 

^y = ,A rffi/i"    2iMxr/Ls), (3.40) 

If the wind observation is perfect (z2
V0 = 0), 

a//3y = ^^sin(xV4). (3.41) 

For a given Ax and Ls, dJ/dy is proportional to sin^/Lj and the magnitude 

of dJ/dy will be a maximum when sin (xr/Ls) is ±1. This occurs when the observation 

at location xr is placed 90° out of phase from the maximum value for the analysis 

sensitivity gradient. 

The same procedure may be used to derive the relationship between 1^ and Ls 

that maximizes the total sensitivity to a single wind observation as given by (2.16c). The 

derivation (not shown) is relatively simple if the analysis sensitivity gradients length 

scales are assumed to be the same.  Under those assumptions, the total sensitivity to a 

single wind observation is also maximized when l^ = y]2>Ls. 

The same procedure is used to derive the analytical solution for the sensitivity to a 

single height observation, given the wind analysis sensitivity gradient. Using (3.30a), 

(3.34a) and (3.9), the approximation to the (scalar) observation sensitivity at xr may be 

written 

dJ/dy~ r
4f*"     sinfo/Zj-S i—-. (3.42) 
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The single height observation sensitivity, given a wind analysis sensitivity 

gradient, is maximized when 1^ =Ls/yß ~0.5SLS, which is the same relationship 

obtained for a univariate, single height observation, even though the expressions for 

dJ/dy are not the same (cf. (3.16)). According to (3.42), the height observation 

sensitivity is 90° out of phase with the wind analysis sensitivity gradient field given by 

(3.9), and 180° out of phase with the wind observation sensitivity given by (3.39). The 

maximum value for dJ/dy (when l^ = LJy/3 ) can be written as 

dJ/dy = --^k^sm(xr/Ls). (3.43) 

If the height observation is assumed to be perfect (z2
v0 = 0), 

a//ay = -^^sin(^/4). (3.44) 
4Ax 

The maximum single height/wind observation sensitivity given by (3.44) does not depend 

directly upon   Ls   (other than through  sin(xr/Ls)), whereas the maximum single 

wind/height observation sensitivity (3.41) is proportional to L2
S. 

The above discussion explains why the maximum wind (height) observation 

sensitivity occurs 90° out of phase with the maximum height (wind) analysis sensitivity 

gradient for the coastline examples in Figs. 3.15 and 3.16. Other features of note in Figs. 

3.15 and 3.16 are the large observation sensitivity along the coast, the large observation 

sensitivity at the left boundary for height but not wind observations, and the apparent 
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presence of large sensitivity for wind (but not height) observations in the well-observed 

interior. 

In Fig. 3.15c, the wind/height observation super-sensitivity is single-valued along 

the coastline, whereas the height/wind observation super-sensitivity (Fig. 3.16c) oscillates 

from positive to negative and back to positive for the coastal observation and the two 

points immediately inland. The super-sensitivity along the coast follows the same pattern 

as in the univariate examples in Fig. 3.2 and Fig. 3.13, namely that the super-sensitivity is 

single-valued for univariate wind observations and oscillates between positive and 

negative for univariate height observations. In Chapter III.C.2, the super-sensitivity along 

the coastline was shown to be due to an abrupt change in the density of the observations 

in a region of large amplitude of the analysis sensitivity gradient. Closer inspection of the 

row of Kr (Fig. 3.4) for each observation showed that the largest values of Kr occurred 

for the coastal observations. Consequently, the projection of the row of Kr onto 3//3xa 

is maximized for the coastal observations. The same situation (not shown) occurs for the 

wind/height and height/wind cases in Figs. 3.15 and 3.16, even though the analysis 

sensitivity gradient is zero at the coastline. The projection of KT onto dJ/dxa  is a 

maximum due to the asymmetrical cross-correlation functions (Figs. 3.15a and 3.16a) that 

match the similar structure in the analysis sensitivity gradient near the zero crossing. 

One feature of interest in Fig. 3.15 is the apparent presence of super-sensitivity for 

most of the wind observations over the land interior, but not for the height observations in 

the same location (Fig, 3.16).   Since the units for the height analysis sensitivity gradient 
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and the wind/height observation sensitivity are not the same, super-sensitivity cannot 

simply be determined by comparing the magnitude of the observation sensitivity to the 

analysis sensitivity gradient. 

Another notable difference between Figs. 3.15 and 3.16 is the large sensitivity at 

the left-most boundary for the height observations, but not for the wind observations. 

This difference occurs because of the very different structure of KT for the height (wind) 

observation sensitivity problems, given only the wind (height) analysis sensitivity 

gradients. The rows of KT corresponding to the four observations nearest to the left 

boundary are shown in Fig. 3.17 (for wind observations) and Fig. 3.18 (for height 

observations). The row of Kr for the wind observation on the left boundary (Fig. 3.17d) 

has nearly constant amplitude over the well-observed continental part of the domain. 

When this row of Kr is projected onto the height analysis sensitivity gradient (Fig. 

3.15b), the wind observation sensitivity is nearly zero. By comparison, the row of Kr 

corresponding to the height observation at the left boundary has maximum (negative) 

amplitude at gridpoint 1 and rapidly increases to zero away from the boundary. The 

projection of the row of KT onto the wind analysis sensitivity gradient (Fig. 3.16b) 

produces large positive height observation sensitivity for the observation at the left 

boundary. The row of Kr corresponding to the height observation at gridpoint 2 is 

shown in Fig. 3.18c. In this case, the row of Kr is nearly symmetrical (both positive and 

negative) about gridpoint 2 so that the resulting height observation sensitivity is close to 

zero. 
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Figure 3.17. As in Fig. 3.4, except for the row of the transposed Kaiman gain matrix for 
wind observations located at gridpoints (a) 4, (b) 3, (c) 2, and (d) 1 in Fig. 3.15c. Values 
are plotted as a function of the grid location (abscissa) and amplitude (ordinate). 
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Figure 3.18. As in Fig. 3.17, except for the row of the transposed Kaiman gain matrix for 
height observations located at gridpoints (a) 4, (b) 3, (c) 2, and (d) 1 in Fig. 3.16c. Values 
are plotted as a function of the grid location (abscissa) and amplitude (ordinate). 

Why is the structure of the (transposed) Kaiman gain matrix so different for the 

wind/height and height/wind observation sensitivity problems? Even though the{v/j) and 

(hv) covariance functions used to compute HPÄ in (2.6) are identical except for the sign 
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difference between (3.34a) and (3.34b), the background error covariance functions used 

to compute the term (HPÄH
T + R)"1 are not the same.   The (vv) covariance function 

(Fig. 3.9a) is used for wind observations, while the (hh) covariance function (Fig. 3.2a) 

is used for height observations. This difference accounts for the vastly different 

appearance of KT for wind and height observations. These results suggest that large 

height observation sensitivities could occur along the boundary of a limited domain 

problem if the analysis sensitivity gradient is non-zero at the boundary. 

4.        Exploring the Limits of Observation Sensitivity 

The purpose of this section is to explore the variations of the observation 

sensitivity as a function of the analysis parameters Z^, Ls, £r, and £b.  The experimental 

design follows that used for the one-dimensional univariate computations (Chapter m.C) 

and the coastal case from this section. Each experiment computes the sensitivity to a 

height or wind observation given the wind or height analysis sensitivity gradient 

according to (3.30a,b). 

a.        The Single Observation Sensitivity Map 

A new tool is introduced that may be used to find the location where the 

sensitivity to a single observation is a maximum. The single observation sensitivity map 

is generated by placing a single probe observation, one at a time, at each gridpoint and 

solving for the observation sensitivity. In this way, a map showing the sensitivity to a 

single observation is generated.   The probe observation has the error characteristics of 
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some observing system of interest - for example, aircraft temperatures or winds taken 

during a targeting experiment. 

The single observation experiment serves as the framework for the 

examples in the section. The amplitudes for both the height and wind analysis sensitivity 

gradients are set to one. The value of Ax is selected so that the height/wind observation 

sensitivity is maximized when Z^ equals the NAVDAS value of Lb=3.85xl05m. 

Maximum observation sensitivity for a single height observation occurs when 

Lb=Ls/^ = 3.06Ax,    where   a   value   of   Ls=53lAx    is   assumed,    so   that 

Ax = 1.25;cl05m.    The relationship between the wind and height background error 

variances is given by (3.33) or ev = geh/f0Lb ~ 0.25eA. The height and wind background 

error variances are assumed to be spatially homogeneous with eh = 1.0. The observations 

are assumed to be perfect. 

The single wind observation sensitivity results, given the height analysis 

sensitivity gradient, are shown in Fig. 3.19. The wind-height correlation model for an 

observation at gridpoint 51 using the value of Z^  that maximizes the observation 

sensitivity (Z^ =*J3LS) is shown in Fig. 3.19a.      A single wind observation, which is 

assumed to be perfect, is placed in the center of the domain at the zero crossing of the 

height analysis sensitivity gradient (Fig. 3.19b). The maximum wind/height observation 

sensitivity corresponding to the correlation function in Fig. 3.19a is shown in Fig. 3.19c. 

The single wind/height observation sensitivity map (SOSM) is shown in Fig. 3.19d. The 

maximum observation sensitivity in Fig. 3.19d is 90° out of phase with the height 
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Figure 3.19. As in Fig. 3.15(g,h,i), except for the wind/height single observation 
sensitivity map. (a) The wind/height background error correlation model for a wind 
observation at gridpoint 51, (b) the imposed height analysis sensitivity gradient, (c) the 
wind/height sensitivity to a single wind observation at gridpoint 43, and (d) the single 
wind/height observation sensitivity map. 
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analysis sensitivity gradient (Fig. 3.19b) as predicted by (3.39). This 90° phase shift for 

the maximum wind/height observation sensitivity occurs because of the assumed 

geostrophic relationship between the height and wind background errors (where the winds 

are proportional to the derivative of the height field gradient), and the trigonometric 

specification of the analysis sensitivity gradient. 

The results for a single height observation given a wind analysis sensitivity 

gradient are shown in Fig. 3.20 in the same format as Fig. 3.19. The background error 

correlation for the value of 1^ that maximizes the observation sensitivity (Ij, = LJ^ß) is 

shown in Fig. 3.20a. The mathematical form of the analysis sensitivity gradient (Fig. 

3.20b) is the same, except it now represents a wind sensitivity gradient and has different 

units. The maximum sensitivity to a single, perfect height observation placed in the 

center of the domain at the zero crossing of the analysis sensitivity gradient is shown in 

Fig. 3.20c. The single height/wind observation sensitivity map (Fig. 3.20d) has the 

expected 90° phase shift between the height observation sensitivity and wind analysis 

sensitivity gradient. The observation sensitivity is largest when the analysis sensitivity 

gradient is a zero, and is zero when the analysis sensitivity gradient is a 

maximum/minimum. 

The most striking differences between the height/wind and wind/height 

observation sensitivities (Figs. 3.19c, 3.20c) are that they are opposite in sign and that the 

magnitude of the height/wind observation sensitivity is much smaller.    The sign 
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Figure 3.20. As in Fig. 3.19, except for the height/wind single observation sensitivity 
map. (a) The height/wind background error correlation model for a height observation at 
gridpoint 51, (b) the imposed wind analysis sensitivity gradient, (c) the height/wind 
sensitivity to a single height observation at gridpoint 43, and (d) the single height/wind 
observation sensitivity map. 
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difference between the height/wind and wind/height observation sensitivities is due to the 

signs of the correlation functions (3.35a) and (3.35b), and shows up as a 180° phase shift 

in the single observation sensitivity maps (Figs. 3.19d and 3.20d). The magnitudes of the 

height/wind and wind/height observation sensitivities are not directly comparable since 

the units are different. Moreover, since the magnitudes of the analysis sensitivity 

gradients were both assumed to be one, strict comparisons between the magnitudes of the 

wind/height and height/wind observation sensitivities cannot be made. 

For a single observation, the structure of the Kaiman gain is determined 

by the appropriate multivariate correlation function (cf. Figs. 3.18a and 3.19a), and the 

magnitude is determined by the error variances. One can easily see why the phase shifts 

are in opposite directions for height and wind observations by examining the correlation 

functions (Figs. 3.19a, 3.20a) and the analysis sensitivity gradients (Figs. 3.19b, 3.20b). 

It is readily apparent that maximum observation sensitivity occurs when the positive and 

negative lobes of the correlation function match up with the analysis sensitivity gradient 

structures of the same sign. The correlation function for heights and winds are of 

opposite sign, and therefore the maximum wind (height) observation sensitivities are 180° 

out of phase, and 90° out of phase (but in opposite directions) with the height (wind) 

analysis sensitivity gradients. This exercise also suggests why (in order to maximize 

observation sensitivity) it is necessary to have similar length scales for the background 

error correlation and the analysis sensitivity gradient. 
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b.        The Effects of the Background Error Correlation Length Scale 

This experiment examines the effect of the background error correlation 

length scale Z^ on the observation sensitivity, where 1^ is allowed to vary between 

0.25Ax to 25.25Ax in increments of 0. 25Ax. Two experiments are conducted, one for a 

single wind observation, given the height analysis sensitivity gradient (Fig. 3.21), and the 

other for a single height observation, given the wind analysis sensitivity gradient (Fig. 

3.22). The peak observation sensitivity occurs for shorter 1^ for the height observation 

than for the wind observation, which is consistent with the derived relationships in (3.44) 

and (3.41). The limiting wind/height observation sensitivity for l^ » Ls and I^^L,. can 

be determined from (3.39), and from (3.42) for the height/wind observation sensitivity. 

When  Z^ »Ls, the height/wind observation sensitivity decreases much faster with 

increasing l^ than the wind/height observation sensitivity (the decrease is proportional to 

l/4   for heights and 1/4  for winds). When 1^ «: Ls, the wind/height observation 

sensitivity decreases more rapidly with decreasing l^ (the decrease is proportional to L\ 

for winds and l^ for heights). 

The maximum sensitivity to the wind observation occurs at 9.0Ax with a 

value of 46.26 (J /ms"1), where the units for J are arbitrary for this idealized case. The 

theoretical maximum wind observation sensitivity is given by (3.41) and equals 46.63 

when 4 = 9.19Ax. The maximum sensitivity to the height observation (Fig. 3.22) is 1.01 
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Figure 3.21. As in Fig. 3.11 except for the variation of the wind/height observation 
sensitivity as a function of the background error correlation length scale from 0.25Ax to 
25-OAx (Zj,; abscissa), with Ls = 5.31Ax. The solid curve is the computed observation 

sensitivity from (3.6) and (3.29b), and the dotted line is the analytical approximation to 
observation sensitivity from (3.6) and (3.39). The dashed lines at +1.0 are the threshold 
values for observation super-sensitivity. 
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Figure 3.22. As in Fig. 3.6, except for the variation of the height/wind observation 
sensitivity as a function of the background error correlation length scale from 0.25Ax to 
25.0Ax (I,,; abscissa), with Ls =5.31 Ax.  The solid curve is the computed observation 
sensitivity from (3.6) and (3.29a), and the dotted line is the analytical approximation to 
observation sensitivity from (3.6) and (3.42). The dashed lines at ±1.0 are the threshold 
values for observation super-sensitivity. 

J /m for Ij, = 3.0Ac, which in excellent agreement with the analytical value from (3.44) 

of dJ/dy = 1.02 J /m for I> = 3.06Ac. 
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The theoretical observation sensitivities computed using the integral 

approximation (3.39) and (3.42) are plotted as the dotted line in Figs. 3.21 and 3.22. 

Comparison of the computed (solid) and theoretical approximation (dashed) wind 

observation sensitivities (Fig. 3.21) shows that the two curves begin to deviate when l^ 

is larger than 15Ax. This difference occurs because a finite grid domain is used for the 

numerical example whereas an infinite domain is used for the analytical example. When 

4 becomes long relative to the length of the grid domain, then the asymmetrical 

placement of the observation in the domain (e.g., at point 43) becomes apparent, due to 

unequal contributions from the positive and negative lobes of the correlation function 

(and hence Kr). This implies that the upper limit of the useful range for 4 for this 

experimental design is around 15Ax for wind observations. The computed (solid) and 

theoretical approximation (dashed) single height/wind observation sensitivity curves in 

Fig. 3.22 are remarkably similar. The main difference is that the computed observation 

sensitivity decreases more rapidly towards zero when l^ is less than lAx. While these 

differences appear to be small in Fig. 3.22, they will become more apparent in the next set 

of figures. This difference implies that the lower limit for valid range for 4 is around 

lAx. Since the approximation used to derive (3.42) required that lid^ > 2Ax, this result 

is consistent with the theory. 

c.        The Effects of the Analysis Sensitivity Length Scale 

These experiments parallel those performed for the one-dimensional 

univariate examples in Chapter m.C.2 and Chapter m.C.5.   The analysis sensitivity 
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gradient is given by a single cosine wave and the length scale Ls ranges from 2Ax to 

14Ax. The background error correlation length scale varies from 0.1 Ax to 12.1 Ax. The 

variation of the sensitivity to a single wind observation as a function of L,, and Ls, given 

the height analysis sensitivity gradient, is shown in Fig. 3.23. Overall, the pattern of the 

curves in Fig. 3.23 is similar to the variation of the OSM for the single univariate wind 

example in Fig. 3.10. This result is as expected, since the relationship for the maximum 

observation sensitivity (i.e., 1^ = J3LS) is the same.   The main difference between the 

two figures arises from the additional factor of l/Ls that appears in the univariate wind 

observation sensitivity equation (3.27) versus (3.39). 

The equivalent results for a single height observation, given the wind 

analysis sensitivity gradient, are shown in Fig. 3.24, and may be compared to the 

univariate height example in Fig. 3.5. Both figures have the predicted relationship 

between maximum observation sensitivity, Z^ and Ls (i.e., 1^ = Ls/v3), but otherwise 

bear only a vague resemblance to one another. The main difference between the 

univariate height and the height/wind single observation sensitivity is that the height/wind 

observation sensitivity differs by an additional factor of \JLS in (3.42) versus (3.16). 

d. The Effects of the Observation Error 

The next set of experiments examines the variation of the observation 

sensitivity as a function of 1^ and the ratio of the observation to the background error 

standard deviation. The sensitivity to a single wind observation, given the height analysis 
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Figure 3.23. As in Fig. 3.10, except for variation of the wind/height observation 
sensitivity as a function of the wind/height background error correlation length scale (Ij,; 
abscissa) and the height analysis sensitivity length scale (I^; ordinate). The length scale 
Ls varies between 2.0Ax and 14.0Ax, and Zj, varies between O.lAx and 12.1 Ax. 
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Figure 3.24. As in Fig. 3.5, except for variation of the height/wind observation sensitivity 
as a function of the height/wind background error correlation length scale (Z^; abscissa) 

and the wind analysis sensitivity length scale OU; ordinate). The length scale Ls varies 

between 2.0Ax and 14.0Ax, and Z^ varies between 0.1 Ax and 12.1 Ax. 
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sensitivity gradient, is in Fig. 3.25, while the sensitivity to a single height observation, 

given the wind analysis sensitivity gradient is in Fig. 3.26. In each case, the observation 

sensitivity decreases as the observation becomes less accurate relative to the background. 

These plots compare very well with the analogous univariate cases (Figs. 3.12 and 3.7). 

The final set of figures shows the variation of the observation sensitivity 

for fixed l^ (= 6Ax) when Ls ranges from 2Ax to 14Ax and error ratio er/zb varies from 

0.0 to 3.0. The single wind/height and single height/wind observation sensitivity results 

are presented in Figs. 3.27 and 3.28, respectively. The two figures differ mainly by the 

error variance scaling of the observation sensitivity. The height/wind observation 

sensitivity (Fig. 3.28) resembles the analogous height univariate example (Fig. 3.8), while 

the wind/height observation example (Fig. 3.27) bears less resemblance to the analogous 

wind univariate example (Fig. 3.13). In each case, the observation sensitivity decreases 

as the observations become inaccurate relative to the background. For a specified value 

of £r/
efc» the observation sensitivity increases as the analysis sensitivity gradient length 

scale increases up to the point where Ls and l^ are roughly similar. The observation 

sensitivity remains relatively constant as Ls increases beyond that point. 

5.        Summary of Wind/Height and Height/Wind Observation Sensitivity 

This   section  explored  the  contribution  to  total  height  observation 

sensitivity from the cross-correlation between height observations and the wind analysis 

sensitivity gradient, and the contribution to the total wind observation sensitivity from the 

cross-correlation between wind observations and the height analysis sensitivity gradient. 
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Figure 3.25.     As in Fig. 3.12, except for variation of the wind/height observation 
sensitivity as a function of /^(abscissa) and zr/eb (ordinate).  The range of l^ is from 
0.1 Ax to 12.1 Ax, the range of er/eb is from 0.0 to 3.0, and Ls = 5.3 lAc. 
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Figure 3.26. As in Fig. 3.7, except for variation of the height/wind observation 
sensitivity as a function of 1^ (abscissa) and er/eb (ordinate). The range of 4 is from 

0.1 Ax to 12.1 Ax, the range of Er/eb is from 0.0 to 3.0, and Ls = 5.3lAx. 
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Figure 3.27.     As in Fig. 3.13, except for variation of the wind/height observation 
sensitivity as a function £r/eb (abscissa) and Ls (ordinate).  For this case, Z^ = 6.0Ax 

while Ls varies between 2.0Ax and 14.0Ax and er/eb ranges from 0.0 to 3.0. 
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Figure 3.28. As in Fig. 3.8, except for variation of the height/wind observation sensitivity 
as a function er/eb (abscissa) and Ls (ordinate). For this case, Z^ = 6.0Ax while Ls 

varies between 2.0Ax and 14.0Ax and £r/£b ranges from 0.0 to 3.0. 

The simplifying assumptions of a single observation variable and a single analysis 

sensitivity gradient were applied so that the multivariate contributions due to the 

geostrophic coupling of the height and wind background error covariances could be 

isolated.   The terms height/wind and wind/height observation sensitivity were introduced 
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to refer to the contribution from these two terms to the total height and wind observation 

sensitivity. 

The behavior of the height/wind and wind/height observation sensitivity is similar 

to the one-dimensional univariate examples of Chapter m.C. In both cases, the 

observation sensitivity is largest when the length scales of the analysis sensitivity gradient 

and background error correlation are similar, and the observations are accurate relative to 

the background. Super-sensitivity occurs when the observations are isolated or an abrupt 

discontinuity in the density of the observations occurs. Large height/wind observation 

sensitivity also occurs at the domain boundary of the well-sampled interior. This implies 

that large observation sensitivity may occur for limited domain problems when the 

analysis sensitivity gradient is non-zero along the boundary. 

The Single Observation Sensitivity Map (SOSM) was introduced as a technique to 

identify locations in the domain where the sensitivity to a single observation is largest. 

The SOSM shows that maximum (minimum) height/wind and wind/height observation 

sensitivity occurs when the observation is placed 90° out of phase with the maximum 

(minimum) analysis sensitivity gradient. By comparison, the largest univariate 

observation sensitivity occurs at the maxima (minima) of the analysis sensitivity gradient. 

Consequently, the optimal location for an adaptive height observation may not be the 

optimal location for an adaptive wind observation. 

The one-dimensional observation sensitivity results from Chapter IHC and 

Chapter ELD will be used to interpret the two-dimensional observation sensitivity 

investigated in Chapter IH.E and Chapter ELF. 
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E.        TWO-DIMENSIONAL UNIVARIATE EXAMPLES 

The purpose of this section is to explore the behavior of the observation and 

background sensitivity for the two-dimensional univariate problem, and to determine the 

extent to which the one-dimensional univariate analytical and computational results of 

Chapter IILC apply to the two-dimensional problems. An example of a simple, idealized 

two-dimensional height analysis sensitivity gradient and a single height observation is 

considered first. The effects of multiple observations on the observation sensitivity are 

then evaluated. The analysis sensitivity gradient used for these examples differs from the 

one-dimensional analysis sensitivity gradients in one important respect. The one- 

dimensional analysis sensitivity gradients were defined to be a simple cosine wave, and 

the grid domain was defined such that the analysis sensitivity gradient summed gridpoint 

by gridpoint over the domain is zero. Many choices of J used for adjoint sensitivity 

research also yield sensitivities that sum to zero over the global domain (R. Langland, 

NRL- Monterey, personal communication). The analysis sensitivity gradient used in this 

section is composed of a combination of sine and exponential functions, and the sum of 

the gridpoint values of dJ/dxa is non-zero over the domain. In this respect, the analysis 

sensitivity gradient assumed for these experiments is representative of an analysis 

sensitivity gradient for a limited domain, or for certain cost functions such as 

precipitation (R. Langland, NRL-Monterey, personal communication). The differences 

between these two analysis sensitivity gradients leads to surprising results that will be 

shown in this section. 
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1. Display of the Observation Sensitivity Vector 

Observation sensitivity is defined in observation space and is more difficult to 

display on a two-dimensional map than standard gridpoint fields, such as the analysis 

sensitivity vector. The example in Fig. 3.1 avoided this problem by placing an 

observation at every gridpoint, and assigning a very large observation error standard 

deviation to those observations over the ocean, which effectively removed the 

observations from the adjoint problem. While this is a useful trick for simple examples, 

such as the one illustrated in Fig. 3.1, practical considerations prohibit its use in real 

applications. The analysis space projection of the observation sensitivity vector, which is 

defined in (2.9), may be used to display observation sensitivity as a contoured field. This 

field is obtained by applying the adjoint of the forward observation operator to the 

observation sensitivity vector. The adjoint observation operator (Hr) projects the 

observation sensitivity vector from observation space into analysis grid space, where it 

can be displayed as a contoured field. However, the analysis space projection does not 

provide an unambiguous interpretation of the observation sensitivity in that large values 

of the analysis space projection (at a gridpoint) cannot directly be related to any particular 

observation (i.e., more that one observation may contribute to the analysis space 

projection at a gridpoint). This ambiguity is avoided in this section by assuming that the 

observations are located at gridpoints. 

2. Single Observation Experiments 

The experiment design is as follows. The analysis sensitivity gradient (Fig. 3.29a) 

is composed of a combination of the large- and small-scale sensitivity patterns from Fig. 
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3.2 with Ls chosen so that only the large-scale patterns are super-sensitive to a single 

observation for an appropriate choice of L^. This analysis sensitivity gradient is the same 

as used in Fig. 6 of Baker and Daley (2000). The background error correlation is 

modeled using the SOAR function for heights from (3.1) with Zj, = 3.60Ac, which is 

slightly larger than the value of 1^ = 2.07Ax used in Baker and Daley (2000). However, 

a single observation placed near the maxima of the large-scale analysis sensitivity 

gradient will be super-sensitive for either choice of L,,.  It will be shown later in this 

section that the observation sensitivity for multiple observations is maximized when 

1^ =3.60Ac. The background error standard deviation is set to 1.0 and the observation 

error standard deviation is set to 0.1. 

When a single height observation is placed at a gridpoint near the center of one of 

the positive analysis sensitivity gradient maxima, the analysis space projection of the 

observation sensitivity (Fig. 3.29b) appears as a very localized response around the 

gridpoint. In the corresponding background sensitivity vector in Fig. 3.29c, the 

background sensitivity equals the analysis sensitivity everywhere except at the 

observation location. The values for the analysis space projection of the observation 

sensitivity and background sensitivity at this single observation location are 4.45 and - 

3.84, respectively, which are much larger that the analysis sensitivity gradient value of 

0.31 at the same gridpoint. 

The background error correlation between the observation location and all other 

grid locations (i.e., the term HP^, in (2.8a)) is shown in Fig. 3.29e.   Because only the 
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Figure 3.29. Two-dimensional univariate single height observation sensitivity example, 
(a) Specified analysis sensitivity gradient, (b) single height observation sensitivity, (c) 
background sensitivity, (d) corresponding analysis, assuming an innovation of 1.0 m for 
the single height observation at the "+", (e) background error correlation function for the 
observation at the "+", and (f) row of KT for the observation at the "+". The color scale 
is at the bottom. 
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single observation exists, the row of the Kaiman gain matrix (Fig. 3.29f) corresponding to 

that (single) observation is nearly identical to the correlation function (Fig. 3.29e). As 

explained in Chapter OLD, observation sensitivity can be visualized by mentally 

summing, gridpoint by gridpoint, the product of the row of KT (Fig. 3.29f) with the 

analysis sensitivity gradient (Fig. 3.29a). This mental exercise will be used extensively in 

this section. 

The adjoint sensitivity field can be compared to the (forward) analysis if the 

background field is assumed to be zero, and the observation is assumed to be one. The 

actual background and observations are not required for the observation adjoint 

sensitivity calculations. Under these assumptions, the analysis is given by 

xa=Ky. (3.45) 

The analysis "spreads" the information from the observation(s) to the surrounding 

gridpoints through the background error correlation or the Kaiman gain matrix. For a 

single observation, the resulting analysis (Fig. 3.29d) has the same pattern as the 

correlation function (Fig. 3.29e) and the appropriate row of Kr (Fig. 3.29f), and 

illustrates how the information contained in the single observation is spread to the 

surrounding observations. In contrast, the adjoint process "gathers" the analysis 

sensitivity gradient information from the surrounding gridpoints to the observation 

location according to the background error correlation or Kaiman gain matrix. 
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a.        The Effects of the Background Error Correlation Length Scale 
on the Observation Sensitivity 

This section examines how the observation sensitivity changes as the 

background error correlation length scale is varied from 0.25Ax to 25.25Ax.    The 

maximum value of the observation sensitivity measure (Fig. 3.30) is obtained if the 

specified value of Zj, is sufficiently large so that the correlation is essentially one between 

the observation location and every gridpoint contained within the positive regions of the 

analysis sensitivity gradient.     For this example, the analysis sensitivity gradient at the 

N 

observation location equals  0.31,  and   ^(dJ/dxa) =7.48,   so  that the predicted 
n=\ 

observation sensitivity limit as Z^-x» is 7.41 (from (3.24)) with a corresponding 

observation sensitivity measure (from (3.6)) of 24.54. The observation sensitivity 

measure in Fig. 3.30 equals 24.00 when Zj, = 25.25Ax, with a corresponding observation 

sensitivity of 7.24. These values are in excellent agreement with the predicted limits. 

This result may be compared to the single height observation case for the 

one-dimensional univariate domain (see Fig. 3.6). The observation sensitivity for the 

one-dimensional height example (cf., Fig. 3.6) is largest when the projection between the 

(transposed) Kaiman gain matrix and the observation sensitivity vector is maximized, 

which occurs when 1^=3.06Ax.       As the correlation length increases beyond its 

maximum value, the contributions from the negative sub-structures of the analysis 

sensitivity gradient tend to decrease the overall observation sensitivity.   In the limit as 
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Figure 3.30.   As in Fig. 3.6, except for variation of the observation sensitivity measure 
(ordinate) as a function of l^ from 0.25Ax to 25.0Ax (abscissa) for the single height 

observation in a two-dimensional field. The dashed lines at ±1.0 are the threshold values 
for observation super-sensitivity. 
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Ij, -» oo, the observation sensitivity tends to zero since the sum of the analysis sensitivity 

gradient was defined to be zero over the domain. 

In comparison, the largest observation sensitivity for the two-dimensional 

univariate example (Fig. 3.29) occurs when both positive sub-structures of the analysis 

sensitivity gradient contribute maximally to the observation sensitivity vector. This 

occurs when 1^ is sufficiently long so that the observation location is essentially fully 

correlated with all gridpoints contained within the positive regions of the analysis 

sensitivity gradient. Once this point is reached, any further increases to 1^ cannot change 

the observation sensitivity. For the two-dimensional univariate height example (Fig. 

3.30), the observation sensitivity continues to increase for the entire plotted range of Z^. 

b. The Effects of Observation Error on the Observation Sensitivity 

The variation of the observation sensitivity measure as a function 1^ and 

the ratio of the observation error standard deviation fe) to the background error standard 

deviation (£b) is plotted in Fig. 3.31. Since eb =1.0 everywhere, £r effectively ranges 

from zero to 3.0eA.    Two effects dominate the observation sensitivity measure in Fig. 

3.31. First, the observation sensitivity measure decreases as the observation error 

standard deviation increases, i.e., with poorer observations. Second, the observation 

sensitivity measure increases as the background error correlation length scale increases. 

Overall, these variations may be interpreted that the observation sensitivity is largest for 

an accurate observation and for long background error correlation length scales. 
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Figure 3.31.   As in Fig. 3.7, except for variation of the observation sensitivity measure as 
a function of L,, (abscissa) and £r/eb (ordinate) for the single height observation in a 

two-dimensional field.   The background error correlation length scale Zj, ranges from 

0.1 Ax to 12.1Ax, while er/eb varies from 0.0 to 3.0. 

This result may be compared to the single height observation case for the 

one-dimensional univariate domain (see Fig. 3.7). The observation sensitivities in Fig. 

3.31 and Fig. 3.7 decrease as the observation error standard deviation increases relative to 
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the background error standard deviation. The primary difference between the two figures 

occurs because the one-dimensional analysis sensitivity gradient used to generate Fig. 3.7 

sums to zero over the domain, whereas the two-dimensional analysis sensitivity gradient 

used to generate Fig. 3.31 does not sum to zero. Therefore, as discussed above, the 

asymptotic behavior of the observation sensitivity for long background error correlation 

lengths is different for the two examples. 

The results from these two-dimensional single observation univariate 

experiments indicate that the general decrease in observation sensitivity with an increase 

in the ratio of the assumed observation error variances to the background error variances 

is consistent for all examples and can thus be considered a general observation sensitivity 

property. However, the behavior of the observation sensitivity as a function of 

correlation length (i.e., Figs. 3.7 and 3.30) cannot be as readily generalized to other cases. 

However, this is due to differences between the one- and two-dimensional analysis 

sensitivity gradients (as explained at the beginning of Chapter DIE) rather than a 

fundamental difference between one- and two-dimensional observation sensitivity. In 

both examples, the observation sensitivity increases as the background error correlation 

length scale increases. Large observation sensitivity occurs when the length scales of the 

background error correlation and the analysis sensitivity gradient are similar. The 

observation sensitivity behavior for large values of [^ depends upon the details of the 

imposed analysis sensitivity gradient. Specifically, if the sum of the analysis sensitivity 

gradient is zero over the domain, the observation sensitivity will tend to zero as [^ -> °°. 
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Conversely, if the sum of the analysis sensitivity gradient over the domain is non-zero, 

then the observation sensitivity will tend to a non-zero constant value as 1^ —»<». 

3.        Multiple Observation Experiments 

a.        The Effects of Observation Density on Observation Sensitivity 

The purpose of this section is to determine how the presence of multiple 

observations changes the behavior of the observation sensitivity vector. The analysis 

sensitivity gradient is the same one used for the single observation example in Fig. 3.29. 

However, twenty observations are now placed at gridpoints in a "Z" shape across the 

centers of the analysis sensitivity gradient pattern (Fig. 3.32a). The background error 

standard deviation is set to 1.0 and the observation error standard deviation is set to 0.1 to 

prevent the matrix inversion (HPfcH
r +R)"1 from becoming computationally singular for 

very long background correlation length scales. 

The first step, experimentally, was to find the value of l^ between nearly 

OAx to 300Ax that maximized the analysis space projection of the observation sensitivity 

in Fig. 3.32b. The gridpoint (observation) with the maximum analysis space projection of 

the observation sensitivity for that value of Z^ is indicated by the circled observation in 

Fig. 3.32b,e,f. The background error correlation length scale that maximizes the 

observation sensitivity is computed to be l^ = 3.6Ax. 

Given the analysis sensitivity gradient in Fig. 3.32a, the resulting analysis 

space projection of the observation sensitivity vector and the background sensitivity 
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Figure 3.32. Two-dimensional univariate height observation sensitivity example for 
multiple observations. The largest sensitivity occurs for the height observation identified 
by the circle; the other height observations are given by the "+". In this plot, 1^ - 3.6Ax, 

and £r/eb  =0.1.   (a) The imposed analysis sensitivity gradient, (b) the analysis space 

projection of the observation sensitivity vector, (c) the background sensitivity, (d) the 
corresponding analysis, assuming an innovation of 1.0 m at each observation location, (e) 
the background error correlation function corresponding to the circled observation, and (f) 
the row of Kr for the circled observation. The color scale is at the bottom. 
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vector are displayed in Figs. 3.32b,c respectively. The largest observation sensitivity 

occurs for the circled observation at the lower right end of the "Z" 

in Fig. 3.32b. The effect of the observation density gradient is more pronounced when the 

density change occurs in a region of significant analysis sensitivity gradient amplitude 

(e.g., for the circled observation). When the observations extend all of the way across the 

analysis sensitivity gradient, the amplitude of the observation sensitivity is less (for 

example, for the observation indicated by the arrow). Thus, the largest observation 

sensitivity (Fig. 3.32b) does not necessarily occur where the analysis sensitivity gradient 

is a maximum, but where there is a large change in observation density and the analysis 

sensitivity gradient is both large scale and sufficiently large in magnitude. This result is 

analogous to the coastal example in Fig. 3.1. 

Assuming that the background field is zero and the observations equal one, 

the resulting two-dimensional analysis from (3.45) is given in Figure 3.32d. The 

homogenous, isotropic nature of the correlation function relative to the circled location 

(Fig. 3.32e) is evident and only a hint of the "Z" configuration of the observations can be 

seen. 

The dependence of the univariate observation sensitivity on the 

observation density can be understood by graphically examining the various terms in the 

observation sensitivity equation, e.g., 

dJ/dy = KT dJ/dxa = (HPftH
r + R)-1 HPb dJ/dxa. 

The term HPb is the background error correlation between the observation locations and 

every gridpoint. The dimensions of this matrix are given by the number of observations 
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and the number of gridpoints. The row of this matrix corresponding to the circled 

observation is shown in Fig. 3.32e. It is symmetric in appearance and is essentially the 

same for every observation location (given the constraints of a finite domain). The 

inverse error covariance matrix (HPAH
r +R)"1 is in observation space and is not plotted. 

The term HPfeH
r is the background error correlation between observation locations. 

Since the observation errors are assumed to be spatially uncorrelated, the matrix R is 

simply the diagonal matrix of the observation error variances e2
r.   The row of the 

transpose of the Kaiman gain matrix (KT) corresponding to the circled observation is 

plotted in Fig. 3.32f. The resulting pattern is not symmetric, but has large values adjacent 

to the circled observation. 

Plots of the appropriate row of Kr for all of the 20 observations are 

shown in Fig. 3.33. The most striking features are the very large lobes (in both size and 

magnitude) that occur for observations that are relatively isolated from their neighbors. 

Observations that are located near the center of the pattern have much smaller maxima 

and minima of the Kaiman gain (in both size and magnitude). These variations in Kr are 

due to the matrix   (HPÄH
r+R)_1.    Observations that are farther from the other 

observations are less correlated with them and this leads to the large asymmetry in the 

Kaiman gain. For the forward analysis problem, this implies that isolated observations 

contain more independent information than observations with close neighbors and are 
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Figure 3.33. Plots of the row of Kr for the 20 observations shown in Fig. 3.32. The row 
of KT corresponds to the circled observation in each panel. The grid domain and color 
scale corresponds to Fig. 3.32. 
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thus given greater weight in the analysis. In the adjoint sense, this indicates that isolated 

observations have larger "adjoint weights" (Kr) and potentially greater observation 

sensitivity. 

The resulting observation sensitivity vector (2.8a) is the result of the 

matrix-vector multiplication between Kr and 3//3xc. As explained earlier, this can be 

visualized for any given observation by mentally summing, gridpoint by gridpoint over 

the domain, the product of dJ/dxa (Fig. 3.32a) and the row of the Kr corresponding to 

that observation (Fig. 3.32e or Fig. 3.33). This exercise can be used to explain the larger 

observation sensitivity value for the observation at the lower-right end of the "Z" 

(indicated by the circle) when compared to the observation at the upper-left end of the 

"Z" (indicated by an arrow). The magnitude and shape of the row of Kr is the same for 

both observations. However, the circled observation is located in a region with larger 

values of the analysis sensitivity gradient, so that the non-zero portions of Kr overlap 

larger values of the analysis sensitivity gradient. Hence, the circled observation has the 

larger observation sensitivity. 

It is evident that the sensitivity for a given observation depends upon the 

overlap between the amplitude and spatial extent (length scale) of the appropriate row of 

Kr, and the amplitude and spatial extent (length scale) of the analysis sensitivity gradient 

dJ/dxa. The observation sensitivity is maximized when the maxima or minima of the 

analysis sensitivity gradient coincide with the maxima or minima of the row of Kr such 
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that the overall observation sensitivity contributions from the projection of Kr onto 

dJ/dxa are of the same sign. 

The Kaiman gain or weight matrix is arguably the most important term for 

both the linear analysis and observation adjoint sensitivity problems.   The properties 

(amplitude, sign, and length scale) of this matrix are a function of several factors, with the 

background error correlation length scale being the dominant factor. The scale of Kr 

decreases as l^ decreases, and the influence of the analysis sensitivity gradient in the 

immediate vicinity of the observation becomes more marked (with correspondingly less 

influence from the adjacent sub-structures of the analysis sensitivity gradient). In 

addition, neighboring observations will not contribute to the observation sensitivity at a 

particular location if the correlation length scale is too small. If Z^ is too long, then the 

maximum amplitude of Kr may not coincide with either the observations or analysis 

sensitivity gradient extrema (particularly for the more isolated observations). 

Similar examples for longer (^=10.7 Ax) and shorter (L,, =1.0 Ax) 

background error correlation length scales are shown in Figs. 3.34 and 3.35, respectively, 

and are in the same format as Fig. 3.32. Although the spatial scale of the row of Kr is 

larger (smaller) for longer (shorter) Lb, the amplitude of the row of Kr for the circled 

observation is smaller (larger), as shown in Fig. 3.34f (Fig. 3.35f)- However, the larger 

spatial scale of Kr for l^ = 10.7Ax does not give the best overlap between the row of 

KT and the analysis sensitivity gradient, which occurs for L^ = 3.6Ax (Fig. 3.32f). 
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Figure 3.34. As in Fig. 3.32, except for two-dimensional univariate height observation 
sensitivity example for multiple observations, with l^ =10.7Ax, and er/eb =0.1. (a) 

The imposed analysis sensitivity gradient, (b) the analysis space projection of the 
observation sensitivity vector, (c) the background sensitivity, (d) the corresponding 
analysis, assuming an innovation of 1.0 m at each observation location, (e) the 
background error correlation function corresponding to the circled observation, and (f) the 
row of Kr for the circled observation. The color scale is at the bottom. 

121 



77 

y 

analysis observation background 
sensitivity    .        sensitivity sensitivity 
   (analysis space projection)    
111111111111 M 1111111 i 111 u Li 111 n 1111 riii 11 ri 11Ji 11111 LJ u 1111111111111111111 i 11111 

© 

(a)i 
~i 111 11 i i 11111111111 i i ii i 11 r 

(bfl h111111II11111111111111111 

,*..' 

(c): 
iII1111111111111 11 i 111111 r 

analysis correlation       Kaiman Gain 
77 

y 

I II I I I i I I I I I I I I I I I I II I I I I LI   LI I I I I I I i I I I I I I I I I II I I I I I I I L|   Li I I I I i II I I I I I I I I I II I I I I I I I LI 

 1111111111111111 II i 

© 
(e): 

11 1111 i 1111111111111 11111 r 
(f)E 

111111 111111 111 111 1111111 r 

— 77 0 
X 

77       -77 0 
X 

77   —77 0 
X 

77 

correlation length 1.0 

-0.9    -0.7    -0.5    -0.3    -0.1       0.1       0.3       0.5       0.7       0.9        1.1        1.3       1.5        1.7       1.9 

Figure 3.35. Two-dimensional univariate height observation sensitivity example for 
multiple observations, as in Fig. 3.34, except with l^ =1.0Ax, and er/eA = 0.1. (a) The 

imposed analysis sensitivity gradient, (b) the analysis space projection of the observation 
sensitivity vector, (c) the background sensitivity, (d) the corresponding analysis, assuming 
an innovation of 1.0 m at each observation location, (e) the background error correlation 
function corresponding to the circled observation, and (f) the row of Kr for the circled 
observation. The color scale is at the bottom. 
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The effect of the background error correlation length scale on the analysis 

is also quite marked. The limited horizontal spreading of the observation information 

into the adjacent region is evident for the short l^ (Figs. 3.34d) where the 0.9 contour 

level closely outlines the "Z" shape. By contrast, the 0.9 contour level in Fig. 3.34d is 

nearly circular when l^ = 10.7Ax, and the observation distribution is barely perceptible 

(as evidenced by the slight oval shape to the analysis field). The more optimum 

I,, =3.6Ax specification leads to an analysis distribution (Fig. 3.32d) that is intermediate 

between Fig. 3.34d and Fig. 3.35d. 

The properties of Kr depend on two additional factors: the distance 

between the observations and the specific background error correlation model used. The 

observation sensitivity behavior is similar (not shown) when the Gaussian (versus the 

SOAR from (3.1)) background error correlation model given by 

M0=(W*»)«P(-'/*»). <3-46) 

is used, although subtle differences occur.   The distance between the observations is 

relative to l^ and determines, in a sense, how much independent information is contained 

in each observation. This issue was discussed using the one-dimensional univariate 

examples in Chapter DI.C. 

b.        The Effects of the Background Error Correlation Length Scale 
on the Observation Sensitivity 

As explained above, the circled location corresponds to the observation 

(from the set of 20 observations) with the largest sensitivity when 1^ = 3.6Ax.   The 
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variation of the observation sensitivity measure for the circled location as a function of 

background correlation length scale (from nearly OAx to 300Ax) is shown in Fig. 3.36, 

which may be compared to the single observation example in Fig. 3.30. The resulting 

observation sensitivity behavior is similar for small Zj,, when the observations tend to 

contribute more as individual, single observations. However, the behavior for larger L,, 

values is quite different when multiple observations are present. For a single observation 

(Fig. 3.30), the observation sensitivity measure rapidly increases to a maximum value 

near 25Ax and increases asymptotically as Zj, continues to increase.   For multiple 

observations, the observation sensitivity measure for the circled location peaks at 3.6Ax, 

and then decreases to a small, nonzero value for very large Z^. This behavior can be 

understood by referring back to Fig. 3.32 (with Lb=3.6Ax), Fig. 3.34 (with 

Zj, =10.7Ax), and Fig. 3.35 (with Zj, =1.0Ax). When the background error correlation 

length is either longer or shorter than the value that maximizes the observation sensitivity 

at the circled location, the row of Kr is either small in spatial scale and magnitude (Fig. 

3.35f) or sufficiently large in spatial scale (Fig. 3.34f) that the maximum amplitude does 

not coincide with large values of dJ/dxa. In either alternative, the observation sensitivity 

is less than when Zj, = 3.6Ax (Fig. 3.32). Similar behavior (not shown) is observed for the 

other observations that are located near the large-scale analysis sensitivity gradient 

maxima. If an observation has nearby neighbors, maximum observation sensitivity 

occurs when the background error correlation length scale is relatively short and the 

observation does not interact with the other observations. When this occurs, the row of 
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Figure 3.36: As in Fig. 3.30, except for variation of the observation sensitivity measure 

(ordinate) as a function of ^   from 0.1 Ax to 300.0Ax (abscissa) for the circled 
observation as indicated by the circle in Fig. 3.32b.   The dashed lines at -10 are the 
threshold values for observation super-sensitivity. 

KT corresponding to the observation is large (as in the corresponding weight given to the 

observation in the analysis), and the observation sensitivity is maximized.     As 1^ 

increases, the observation interacts more with the other observations and the row of 
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Kr (and the corresponding weight given to the observation in the analysis) decreases. 

The behavior was illustrated for the one-dimensional univariate example in Chapter 

m.C.6 (see Fig. 3.14). 

Provided that the observation and background errors are spatially 

homogeneous, the arguments used to derive (3.24) may be used to infer that the 

observation sensitivity for multiple, imperfect observations will also be the same at each 

location in the limit as 4 ~> °° • However, the observation sensitivity measure changes 

from location to location because the analysis sensitivity gradient varies from gridpoint to 

gridpoint. The observation sensitivity measure limit for an infinite l^ for the circled 

observation in Fig. 3.32 from (3.24) equals 1.86, which is very close to the observation 

sensitivity measure of 1.90 for l^ = 300.0A* in Fig. 3.36. 

The derivation of the observation sensitivity limit as Lb —> 0 for multiple, 

imperfect observations is straightforward if H involves the interpolation operator only, 

and the observations are located at gridpoints. In that case, 

dJ/dy = (HHr + R)_1 H a//9xa = (I + R)"1 H dJ/dxa, (3.47) 

and the observation sensitivity is proportional to the analysis sensitivity gradient 

interpolated to the observation location, and inversely proportional to the observation 

error variances. For the example in Fig. 3.36, er =0.1, so that the OSM limit for small 

L,, will be nearly 1.0. 
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c.        The Effects of Observation Error on Observation Sensitivity 

The adjoint weight matrix Kr also depends on the assumed accuracies of 

the observations relative to the background. The effects of increasing the observation 

error standard deviation for all observations from 0.1 to 0.5 and 1.0 are displayed in Figs. 

3.37 and 3.38, respectively, and may be compared to Fig. 3.32. The background error 

standard deviation in each case is spatially homogeneous and equal to 1.0, so that the 

ratios of er/eb are 0.1, 0.5 and 1.0 in Figs. 3.32, 3.37, and 3.38, respectively.      The 

spatial extent and the magnitude of the rows of Kr corresponding to the circled 

observation (Figs. 3.32f, 3.37f, 3.38f) decrease as the relative observation error 

magnitude increases. Consequently, the observation sensitivity for that circled location 

decreases (Figs. 3.32b, 3.37b, 3.38b). The analyzed values near the observation location 

equal the observed value of 1.0 when the observations are nearly perfect (Fig. 3.32d), but 

decrease to slightly less than 1.0 near the more isolated observations when the 

observations and background are of equal assumed accuracy, and the influence of the 

background field (which equals zero everywhere) becomes stronger (Fig. 3.38d). 

The variations of the observation sensitivity measure as a function of 4 (from 

O.lAx to 12.1Ax) and the ratio er/eb (from 0.1 to 3.0) are plotted in Fig. 3.39. The 

maximum value of observation sensitivity measure occurs when l^ = 3.6Ax and 

er/eb=0.l. Two factors dominate the pattern in Fig. 3.39. First, the observation 

sensitivity decreases as the error ratio increases, which implies that relatively poor 

observations contribute less to the observation sensitivity. The rate of decrease in 
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Figure 3.37. Two-dimensional univariate height observation sensitivity example for 
multiple observations, as in Fig. 3.32, except with l^ = 3.6Ax, and er/eb = 0.5.  (a) The 

imposed analysis sensitivity gradient, (b) the analysis space projection of the observation 
sensitivity vector, (c) the background sensitivity, (d) the corresponding analysis, assuming 
an innovation of 1.0 m at each observation location, (e) the background error correlation 
function corresponding to the circled observation, and (f) the row of KT for the circles 
observation. The color scale is at the bottom. 
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Figure 3.38. Two-dimensional univariate height observation sensitivity example for 
multiple observations as in Fig. 3.37, except with 1% = 3.6Ax, and Er/eb =1.0.  (a) The 

imposed analysis sensitivity gradient, (b) the analysis space projection of the observation 
sensitivity vector, (c) the background sensitivity, (d) the corresponding analysis, assuming 
an innovation of 1.0 m at each observation location, (e) the background error correlation 
function corresponding to the circled observation, and (f) the row of KT for the circled 
observation. The color scale is at the bottom. 
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Figure 3.39. As in Fig. 3.26, except for variation of the observation sensitivity measure 
as a function of l^ (abscissa) and er/eb (ordinate) for the circled height observation in a 
two-dimensional field.   The background error correlation length scale Ij, ranges from 
0.1 Ax to 12.1ÄX, while zr/eb varies from 0.1 to 3.0. 

observation sensitivity as the error ratio (er/£fc) increases is strongest when Z^ is large. 

As the error ratio (er/e6) increases, the value of L,, with the maximum observation 

sensitivity measure decreases.   In the forward analysis problem, this is equivalent to 
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stating that "poor" observations have relatively little influence at any gridpoint unless the 

background error correlation lengths scales are very short. In the adjoint sense, this 

implies that relatively poor observations have little sensitivity except when the 

background correlation length scale is small. 

These two effects occur because the amplitude and spatial extent of KT 

decreases as the observation error increases (e.g., Fig. 3.29 vs. Fig. 3.38). One way to 

counteract the resulting decrease in dJ/dy is to decrease l^ so that Kr no longer 

projects onto the adjacent analysis sensitivity gradient sub-structures of opposite sign 

(thereby decreasing the observation sensitivity). This effect does not occur for a single 

observation (e.g., Fig. 3.31 or Fig. 3.7) because Kr does not depend upon the ratio of the 

error variances (£2
r/e2

b). Instead, the observation sensitivity is scaled by el/[e2
h +£,) (see 

(3.16)). 

4.        Summary of Two-Dimensional Univariate Observation Sensitivity 

The two-dimensional univariate observation sensitivity examples agree well with 

the one-dimensional univariate results, which implies that the one-dimensional results 

scale well to two dimensions and are consistent with the theory developed in Chapter 

IH.C. Any differences that occur are readily explained through a careful examination of 

the matrix-vector multiplication of the (transposed) Kaiman gain matrix and the analysis 

sensitivity gradient. 

The two-dimensional univariate observation sensitivity is maximized when an 

observation is placed near the center of the analysis sensitivity gradient, and the 
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observations are assumed to be accurate relative to the background. The observation 

sensitivity is also maximized when the length scales of the background error correlation 

and the analysis sensitivity gradient are similar. Super-sensitivity occurs when the 

observation density changes abruptly, and is most pronounced when the observation 

density change occurs where the analysis sensitivity gradient is large in both scale and 

magnitude. 

The one-dimensional single observation univariate OSM (Fig. 3.6) reaches a 

maximum near the predicted value of L^ = 3.0Ax, and decreases for larger or smaller l^. 

In contrast, the two-dimensional univariate OSM (Fig. 3.29) increases as l^ increases. 

These apparently misleading results suggest that the behavior of the observation 

sensitivity as a function of l^ is quite different for one- and two-dimensional analysis 

systems. However, this is not the case. According to (3.24), the observation sensitivity 

limit as Z^ -> oo equals the sum of the gridpoint values of the analysis sensitivity gradient 

over the domain. For the one-dimensional example, the sum of the gridpoint values of the 

analysis sensitivity gradient is zero, and the observation sensitivity tends to zero as 

4 -> oo. For the two-dimensional example, the sum of the gridpoint values of the 

analysis sensitivity gradient is non-zero, and the observation sensitivity limit approaches 

the value of the sum as L^ -»<». Thus, the OSM behavior as a function of l^ depends 

strongly on the specified analysis sensitivity gradient. For many observation-targeting 

applications, the sum of the analysis sensitivity gradient over the domain is nearly zero, 

and the OSM tends to zero as behavior l^ —> °°. 
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F.        SIMPLE TWO-DIMENSIONAL MULTIVARIATE EXAMPLES 

The purpose of this section is to examine observation sensitivity in the simple 

two-dimensional (horizontal) multivariate context.  The multivariate relationship allows 

for interactions between geopotential height and the u and v wind components.   This 

section expands upon the one-dimensional multivariate observation sensitivity examples 

in Chapter ELD, and the two-dimensional univariate observation sensitivity examples in 

Chapter BOLE. These three sections provide the framework needed to understand the full 

three-dimensional observation sensitivity that will be discussed in Chapter IV. 

1.        The    Height-Height,    the    Height-Wind,    and    the    Wind-Wind 
Background Error Covariances 

The wind-wind covariances and height-wind background error covariances were 

derived following sections 5.2 and 5.3 of Daley (1991), respectively.   The derivations 

(not shown) use the special Second Order Autoregressive (SOAR) function (3.1) for the 

height-height background error correlation function. 

The background geopotential height error variances are given by e2
h. The u- and 

v-wind background error variances are geostrophically related to e2
h, and are given by 

<-<=f^M-^\lfX. (3-48) 

The constant J= g/f0, where g is the gravitational constant and the f0 is the Coriolis 

parameter at 45 °N. The characteristic length scale Ij, is used for both heights and winds. 

The nine multivariate covariance functions in (2.10) may be written as 

Q* =£^(l + r/Z%)exp(-r/4), (3.49a) 

Chu =(^r/^)exp(-r/Z%)sin(t), (3.49b) 
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Cto=-(mlr/ll)exp(-r/Lb)co&b (3.49c) 

Cuh =-Cte =-(\iyE2
hr/ll)exp(-r/Lb)sm<$>, (3.49d) 

Cvh =-Ckv=(lLyE2
hr/ll)exp(-r/Lb)cos$, (3.49e) 

Cav =Ä(1_2v2)exp(-r/l,)rcos<!>sin(i), (3.49f) 

Cw =Qv =^-(l-2v2)exp(-r/4)A-cos(^sin^ (3.49g) 

Ctta =ÄeXp(-r/Z%)[(l-v2r/4)cos2(t)+(l-r/Z,+vVz,)sin2(()],    (3.49h) 

*>   2 
Cw=^exp(-r/4)[(l-vVz%)sin2(|)+(l-r/Z%+v2r/4)cos2(|)],     (3.49i) 

where v2 is a measure of the divergence.  The flow is nondivergent when v2 = 0, and 

irrotational when v2 = 1.    The geostrophic coupling parameter u\ is positive in the 

Northern Hemisphere, negative in the Southern Hemisphere and zero at the Equator. 

Observational evidence suggests that \i varies between 0.75 and 0.95 in the Northern 

Hemisphere mid-latitudes (Lönnberg and Hollingsworth 1986). 

The distance (r) between any two locations is given by (3.2). The angle between 

the x-axis and the line r is given by 0, and increases in a counter-clockwise sense from 

the positive x-axis. 

2.        Multivariate Single Observation Sensitivity Maps 

The one-dimensional multivariate results from Chapter EH.D.4.a showed that the 

maximum sensitivity to a single wind observation is 90° out of phase with the maximum 
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height analysis sensitivity gradient field (which is defined to be a cosine wave). 

Likewise, the maximum sensitivity to a single height observation is phase-shifted by 90° 

with respect to the wind analysis sensitivity gradient. This phase shift occurs because the 

geopotential height and wind background errors are geostrophically related so that the 

geostrophic winds errors are proportional to the gradient of the geopotential height errors. 

These phase shifts were verified using analytical calculations (Chapter m.D.3). The 

single observation sensitivity map will be used in this section to determine whether a 

similar phase shift occurs for two-dimensional multivariate observation sensitivity. 

The observation sensitivity vectors for the two-dimensional multivariate 

configuration are defined according to (2.16a) - (2.16c). The simplifying assumptions 

used for the one-dimensional multivariate problem (Chapter ELD. La) are applied here, 

namely only one observation type and one analysis sensitivity gradient variable are 

considered in each example. The relevant partial observation sensitivities are obtained 

from (2.16a) - (2.16c) and may be written as 

dJ/dh0^KT^kdJßha, (3.50a) 

dJ/dh0 » K^ u dJ/daa, (3.50b) 

dJßK-KlJJ/dv,, (3.50c) 

dJ/du0 = K^A a//3hfl, (3.50d) 

dJ/du0=Ki_udJ/dua, (3.50e) 

dJ/da.-K^dJfiv., (3.50f) 

a//av0==K^a//aha, 0.500 
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a//9v0=ica//dufl, (3.50h) 

a//3v0~K^a//9va, (3.50i) 

The subscripts on the matrix KT follow the convention defined in (2.17) and K is 

defined by (2.6). The nomenclature introduced in Chapter m.D.l.a is used; for example, 

(3.50b) gives the partial sensitivity to the height observations given the u-wind analysis 

sensitivity gradient, and is referred to as the height/wind observation sensitivity. 

The idealized analysis sensitivity gradient pattern and the grid domain from the 

experiments in Chapter m.E are used for the heights and winds (Fig. 3.40). The 

geostrophic coupling parameter \i is set to 1.0, which is equivalent to fully coupled 

Northern Hemisphere flow. Since the observational study by Hollingsworth and 

Lönnberg (1986) found that the wind divergence factor v2 ranges between 0.1 and 0.2 

for background error covariances generated from a forecast background, v2 will be set to 

0.15. The error variances for the background and the single, probe observation are both 

assumed to equal 1.0. 

The background error correlation length scale Ij, equals 2.07Ax, which is the 

value used in Baker and Daley (2000), and is used here solely for graphical reasons. If 

Zj, = 3.6Ax (which corresponds to the maximum univariate height observation 

sensitivity), the maximum sensitivity to a single height observation exceeds the range 

plotted for the other figures in this section. Otherwise, the results are qualitatively 

similar. 

A single observation sensitivity map, similar to that in Chapter HLDAa, is used 

here.    A probe observation is placed sequentially at each grid point and the observation 
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Figure 3.40. The imposed idealized analysis sensitivity gradient for height, u- and v- 
wind, as in Fig. 3.29. The color scale is at the bottom. 

sensitivity is calculated from (3.50a-i). In this way, a map of the sensitivity to a single 

observation is generated. The single observation sensitivity maps for the nine cases 

corresponding to the three observation types (h, u, and v) and the three analysis 

sensitivity gradients (h, u, and v) are shown in Fig. 3.41. In Fig. 3.41a, which is identical 

to Fig. 6e from Baker and Daley (2000), the maximum sensitivity of / to a single height 

observation, given the height analysis sensitivity gradient in Fig. 3.40, occurs where the 

analysis sensitivity gradient is a maximum. The single height/u-wind and height/v-wind 
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Figure 3.41. Single observation sensitivity maps for the partial observation sensitivities 
in (3.50a-i). (a) Univariate height, (b) height/u-wind, (c) height/v-wind, (d) u- 
wind/height, (e) univariate u-wind, (f) u-wind/v-wind, (g) v-wind/height, (h) v-wind/u- 
wind, and (i) univariate v-wind observation sensitivities. See text for explanation of the 
nomenclature. 

observation sensitivity maps corresponding to the analysis sensitivity gradient in Fig. 

3.40 are shown in Figs 3.41b and 3.41c, respectively.   The maximum sensitivity to a 

single height observation is phase-shifted relative to the large-scale u or v analysis 

sensitivity gradient maxima in Fig. 3.40. These phase-shifts are consistent with the one- 
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dimensional results (Figs. 3.19, 3.20) from Chapter DLDAa. In Fig. 3.41b, positive 

height/u-wind observation sensitivities occur to the south, and negative sensitivities occur 

to the north, which implies that a positive height observation perturbation to the south, or 

a negative height observation perturbation to the north, of the u-wind analysis sensitivity 

gradient maxima increases J. Likewise, positive height observation perturbations to the 

east or to the north also increase J (Fig 3.41c). Height observation perturbations of the 

opposite signs to those described above decrease J. 

These results may be understood by considering the analysis equation (2.1). The 

observation information is spread to the surrounding gridpoints according to the Kaiman 

gain or weight matrix. For a single observation (with zb = er = 1.0), the structure of the 

Kaiman gain matrix is determined by the correlation function. The Kaiman gain matrices 

(or equivalently Kr for a single observation) corresponding to the nine different 

background error correlation functions from (3.49a-i) are shown in Fig. 3.42. A single 

height observation either increases or decreases the height analysis in a circular pattern 

around the observation (Fig. 3.42a). Since the height analysis is increased or decreased 

depending upon the sign of the innovation, a positive innovation is always assumed in the 

following arguments. According to Fig. 3.42b, a single height observation increases the 

u-winds to the north and decreases the u-winds to the south. A positive increment in 

height has the net effect of increasing the meridional shear of the zonal wind. This in 

turn increases the negative vorticity according to 

{> = dv/dx-du/dy. (3.51) 

A negative vorticity change is consistent with an increase in the analyzed heights 

near the observation. Similarly, a single height observation decreases the v-winds to the 
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Figure 3.42. Kaiman gain matrices for a single observation denoted by a circle 
corresponding to the background error correlation functions in (3.49a-i). (a) Univariate 
height, (b) height/u-wind, (c) height/v-wind, (d) u-wind/height, (e) univariate u-wind, (f) 
u-wind/v-wind, (g) v-wind/height, (h) v-wind/u-wind, and (i) univariate v-wind 
background error correlation models. 

east (of the observation) and increases the v-winds to the west (Fig. 3.42c). This 

increase in the analyzed height decreases both the meridional wind gradient and the 

vorticity. 
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The regions of maximum observation sensitivity in Fig. 3.41 occur where Kr is 

large and projects strongly onto the analysis sensitivity gradient. In Fig. 3.41a, the 

regions of large height/height observation sensitivity coincide with the large-scale height 

analysis sensitivity gradients (recall that the scales of the analysis sensitivity gradients are 

chosen so that only the large-scale patterns are sensitive to a single height observation). 

In Figs. 3.41b,c, the largest height/wind observation sensitivities are adjacent to the large- 

scale u- and v-wind analysis sensitivity gradients in accordance with the KT distribution 

(Figs. 3.42b,c). Similar arguments can be employed to explain the u-wind/height and v- 

wind/height observation sensitivities in Figs. 3.41d,g, respectively. 

The four wind-wind correlation functions are derived under the constraint that the 

flow is quasi-nondivergent (v2=0.15). The maximum single observation univariate 

sensitivities (i.e., uu and vv in Figs. 3.41e,i)) occur in phase with the large-scale analysis 

sensitivity gradients in Figs. 3.40, while the maximum u-wind/v-wind and v-wind/u-wind 

observation sensitivities (Figs. 3.41f,h) are phase-shifted with the large-scale analysis 

sensitivity gradient in Fig. 3.40. These patterns show the influence of the KT matrix 

(Fig. 3.42e-i). The weak, negative observation sensitivity patterns in Figs. 3.41e,i are due 

to the negative side-lobes of the (uu} and (w) wind correlation functions (and are 

reflected in the corresponding Kr plots of Fig. 3.42e,i). The large negative observation 

sensitivities in the centers of Figs. 3.41f,h are a consequence of the overlapping 

observation sensitivities corresponding to the two large-scale analysis sensitivity 

gradients in Fig. 3.40. 
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The restrictive assumptions used to generate the single observation sensitivity 

maps (i.e., that the height and wind observation and background error variances are equal 

to 1.0, and that the analysis sensitivity gradients have the same functional form and 

amplitude) prevent any conclusions being made regarding the relative magnitudes of the 

resulting single observation sensitivity maps (SOSM). Rather, the purpose of this 

experiment has been to identify the locations of the largest cross-correlation components 

of the observation sensitivity and to determine whether the phase shifts relative to the 

analysis sensitivity gradient occur in the two-dimensional context. These assumptions 

will be relaxed in the following section. 

This experiment demonstrates that the maximum cross-correlation components of 

the multivariate wind and height observation sensitivities are phase-shifted relative to 

their respective analysis sensitivity gradients. These phase-shifts occur as a result of the 

background error cross-correlation terms.   By contrast, the maximum univariate partial 

observation sensitivities occur in phase with the maximum analysis sensitivity gradients 

(for the same variable). 

3.        Multivariate Observation Sensitivity using Real Analysis Sensitivity 
Gradients 

In this section, two of the limiting assumptions from Chapter III.F.2 are relaxed. 

First, analysis sensitivity gradients are derived from fields generated using the NOGAPS 

adjoint rather than idealized trigonometric functions.   Second, realistic observation and 

background error variances, and background error correlation length scales are used. The 

observation and analysis sensitivity gradient variables are now temperature (instead of 

geopotential height) and the u- and v- wind components. 

142 



The previous examples in Chapter El used idealized analysis sensitivity gradients. 

While these problems are much simpler than the full three-dimensional observation 

sensitivities computed using the NAVDAS adjoint, they still represent physically 

possible problems. The NOGAPS analysis sensitivity gradients were introduced because 

the results from earlier sections in this chapter demonstrate that the observation 

sensitivity strongly depends upon the location of the observation in relationship to the 

spatial distribution of the analysis sensitivity extrema, and the structure of the 

background error covariances. Moreover, it is easier to understand observation 

sensitivity in the simpler context of the two-dimensional system than the three- 

dimensional NAVDAS adjoint that will be introduced in the next chapter. 

However, the two-dimensional examples discussed in this sub-section no longer 

represent physically realistic problems because temperature is being used as a proxy for 

heights. The geostrophic assumption used to generate the background error covariances 

relates geopotential height and winds, not temperature and winds. The proper 

relationship between the temperature and wind fields is given by the thermal wind 

equation, which relates the horizontal temperature gradients to the vertical wind shear, 

and thereby requires three dimensions. Nonetheless, the examples are still instructive 

provided caution is used when relating the results of this section to the full three- 

dimensional NAVDAS adjoint sensitivity results. 

a.        Multivariate Single Observation Sensitivity Maps 

The two-dimensional analysis sensitivity gradients used for this example 

(Fig. 3.43) correspond to the 850-hPa temperature and wind (u and v) NOGAPS adjoint 

analysis sensitivity gradients that will be described in greater detail in Chapter IV. The 
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Figure 3.43. NOGAPS analysis sensitivity gradients at 850 hPa for (a) temperature, (b) u- 
wind, and (c) v-wind. The color scale is at the bottom. See text for more details. 

cost function J for these calculations is the energy-weighted forecast error (J/kg). The 

grid domain for this experiment is from 0°N - 90°N and 90°E - 60°W with a grid spacing 

of one-degree latitude and longitude (Ax = 1.0). 

The background error standard deviations are assumed to be spatially 

homogeneous and equal to 2.5 °K for temperature and 4.2 m s"1 for both u- and v-wind 

components. These values correspond to the background error variances used in 

NAVDAS at 850 hPa for midlatitude ocean areas. The error standard deviations for the 

single probe observations correspond to the values assumed by NAVDAS for an aircraft 

observation at 850 hPa, which are 1.3 °K for temperature, and 2.2 m s"1 for u and v. The 

NAVDAS background error correlation length scale of 3.85 x 105 m is used. At 45°N 

(with Ax = 1° Ion.), L^ =4.91Ax.   For simplicity, a constant l^ is assumed over the 

domain. 
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The single observation sensitivity maps for the nine partial sensitivities 

corresponding to (3.50a-i) are shown in Fig. 3.44. The (transposed) Kaiman gain 

matrices for a single observation (and corresponding to the nine partial sensitivities as in 

Fig. 3.41) are shown in Fig. 3.45. The univariate components of the observation 

sensitivity are discussed first (Figs. 3.44a,e,i). In general, the sensitivity of / to a single 

observation is largest when the analysis sensitivity gradient is large both in spatial scale 

and in magnitude. The observation sensitivity is negligible when the analysis sensitivity 

is small both in spatial extent and in magnitude. Several surprising results occur for the 

univariate temperature observation sensitivity (Fig. 3.44a). The temperature analysis 

sensitivity gradient sub-structure near the center of the domain is large in amplitude 

(nearly -1.0 J/kg K), but is relatively small in spatial extent and is flanked by positive 

sub-structures that are either large in magnitude or spatial extent. The corresponding 

univariate single observation temperature sensitivity map (Fig. 3.44a) shows that the 

largest sensitivity occurs for the temperature analysis sensitivity gradient sub-structure 

that is large in spatial extent, but relatively weak in amplitude (< 0.5 J/kg K). The single 

observation sensitivity is significantly weaker for the strong positive sub-structure and is 

non-existent for the negative sub-structure. 

These results can be explained based on the results from Chapter JH.C-E. 

The observation sensitivity is maximized when the projection of KT (Fig. 3.45a) onto 

dJ/dxa (Fig. 3.43a) is maximized, which is when the spatial scales of Kr and dJ/dxa 

are roughly similar.    Univariate observation sensitivity is also maximized when the 

observation is placed near the center of the analysis sensitivity gradient maxima.  If the 
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Figure 3.44. As in Fig. 3.41, except for single observation sensitivity maps 
corresponding to the analysis sensitivity gradients in Fig. 3.43. (a) Univariate 
temperature, (b) temperature/u-wind, (c) temperature/v-wind, (d) u-wind/temperature, (e) 
univariate u-wind, (f) u-wind/v-wind, (g) v-wind/temperature, (h) v-wind/u-wind, and (i) 
univariate v-wind observation sensitivities. See text for explanation of the nomenclature. 
The values have been multiplied by 0.056. Panel (f) appears blank because the values are 
less than the minimum contour intervals of ±1.0. 
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Figure 3.45. As in Fig. 3.42, except for Kaiman gain matrices for a single observation 
denoted by a "+" corresponding to the background error correlation functions in (3.49a-i) 
and the grid domain in Fig. 3.43. (a) Univariate temperature, (b) temperature/u-wind, (c) 
temperature/v-wind, (d) u-wind/temperature, (e) univariate u-wind, (f) u-wind/v-wind, (g) 
v-wind/temperature, (h) v-wind/u-wind, and (i) univariate v-wind background error 
correlation models. 

observation is placed near the center of the large (spatial) scale analysis sensitivity 

gradient, the contributions to dJ/dy tend to be the same sign and the observation 

sensitivity is maximized.   If the observation is placed near the center of the negative 
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analysis sensitivity gradient, the contributions to dJ/dy are both positive and negative 

and a large degree of cancellation occurs due to the presence of the nearby analysis 

sensitivity gradient substructures of opposite sign. Similarly, an observation placed near 

the center of the small (spatial) scale positive analysis sensitivity gradient substructure 

will have smaller observation sensitivity due to significant cancellation from the adjacent 

negative analysis sensitivity gradient (particularly if the observation is placed close to the 

adjacent substructure of opposing sign). 

The cross-correlation contributions to the multivariate observation 

sensitivities involving either temperature observations or temperature analysis sensitivity 

gradients (Figs. 3.44b,c,d,g) show evidence of the phase-shift of the maximum 

observation sensitivity relative to the corresponding analysis sensitivity gradient 

maxima/minima in Fig. 4.43. Finally, the two components of the observation sensitivity 

computed using the u-v cross-covariances are shown in Figs. 3.44f,h. The observation 

sensitivities are very weak. The u-wind/v-wind observation sensitivity is smaller than the 

minimum contour interval of ±0.1 J/(kg m s"1) (Fig. 3.44f). The small observation 

sensitivities are a consequence of the weak projection of KT onto dJ/dxa (for example, 

compare Fig. 3.44h with Fig. 3.45h). 

This experiment demonstrates that the observation sensitivities are 

strongest for the large-scale analysis sensitivity gradient sub-structures. The observation 

sensitivity also tends to be maximized when the analysis sensitivity gradient is large in 

magnitude. These results are consistent with the one-dimensional multivariate results and 

the two-dimensional multivariate results using idealized analysis sensitivity gradients. 
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The observation sensitivity is reduced when an observation is located close to analysis 

sensitivity gradient sub-structures with opposite sign. 

The total observation sensitivities corresponding to the nine partial 

observation sensitivities (3.50a-i) are obtained from (2.16a-c) and may be written as 

a//3T0 = K^j dJ/dTa +KT
mu BJ/dua +KT

mv a//3va, (3.52a) 

dJ/duo =KT
uuJdJ/dTa+KludJ/dna+KlvdJ/dxa, (3.52b) 

a//3vo = KT„j dJßTa +KT
mM dJ/dua +KT„tV dJ/dva, (3.52c) 

where the terms involving cross-correlations between observations of different variables 

have been neglected since only one observation (of one type) is considered at a time. The 

total single observation sensitivity maps for a single temperature, u- and v-wind 

observation are shown in Fig. 3.46. 

Comparing Fig. 3.46a with Figs. 3.44a,b,c, it is clear that the total 

temperature observation sensitivity is dominated by the term in (3.52a) involving the 

temperature analysis sensitivity gradient. The weaker contributions from the other two 

terms are due to their weaker projections of Kr onto dJ/dxa. Likewise, the total u- and 

v- wind observation sensitivities in Figs. 3.46b,c are dominated by the terms in (3.52b,c) 

that involve the temperature analysis sensitivity gradient. The overall effect of the 

multivariate phase shift on the total observation sensitivity is to subtly modify the 

dominant pattern (i.e., that due to the temperature observation sensitivity gradient). Thus, 

the predominant patterns are that the maximum total temperature observation sensitivity 
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Figure 3.46. Total single observation sensitivity maps from (3.52a-c) corresponding to 
the analysis sensitivity gradients in Fig. 3.43 for (a) temperature, (b) u-wind, and (c) v- 
wind. The values have been multiplied by 0.056. 

is in phase with the temperature analysis sensitivity gradient, and the maximum total u- 

and v-wind observation sensitivities are subtly phase-shifted relative to the maxima of the 

temperature analysis sensitivity gradient. Finally, comparisons among the three total 

sensitivities demonstrate that the maximum sensitivity to a single temperature, u- or v- 

wind observation tends to occur in different locations. 

These results may be related to the forward analysis problem as follows. 

The weak sensitivity to a single observation placed near the center of the small-scale 

analysis sensitivity gradients implies that a single observation cannot resolve these small- 

scale analysis features. The information from a single observation is spread horizontally 

according to the weight matrix K (which is equivalent to Kr for any given observation). 

It is clear from Fig. 3.45 that a single observation cannot provide the analysis changes 

needed to resolve the small-scale analysis sensitivity gradient sub-structure indicated by 
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the label "S" in Fig. 3.43a. Note that small observation sensitivity does not imply that the 

change to the analysis by that observation will be small. Rather, it implies that the 

analysis will not be changed in the direction needed to change the cost function J. 

Conversely, strong observation sensitivity implies that the single observation has the 

potential to change the analysis in the direction that will significantly affect J. For a 

single observation, this occurs when the information from the observation is spread 

(according to K) in such a manner that the potential analysis changes are in a direction 

that changes J, which happens when KT and the analysis sensitivity gradient are both 

large scale and of similar shape (c/., Figs. 3.43a, 3.45a, and 3.46a). 

These results have several important implications for adaptive targeting. 

The most important implication is that there may be little sensitivity to a single 

observation placed near the center of a small-scale, large amplitude analysis sensitivity 

gradient, but very large sensitivity to an observation placed near the center of a large- 

scale, but much weaker analysis sensitivity gradient. Therefore, one may not wish to 

target only the largest amplitude analysis sensitivity gradients. Because of the phase- 

shifts due to the multivariate contributions to the observation sensitivity, the results 

suggest that the best location for a temperature observation may not be the best location 

for a wind observation. The results discussed in this sub-section are strictly applicable 

for single observations. The more general case with multiple observations is discussed in 

following sub-sections. 
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b. Limited-Area versus Global Observation Sensitivity Calculations 

One obvious technique to reduce the computational expense is to perform 

the observation sensitivity calculations over a limited domain centered on the region of 

interest. However, the results in Fig. 3.16 and other experiments (not shown) indicate 

that the observation sensitivity can differ significantly between calculations made for a 

limited area and global computations. The reason for this discrepancy is that the 

projection of Kr for a given observation onto dJ/dxa will not be the same if the grid 

boundaries intersect significant values of dJ/dxa.   For unequivocal results, it would 

seem that any observation with significant sensitivity must lie well within the grid 

domain, which in turn requires that the analysis sensitivity gradient must be nearly zero 

on the boundary. 

c. Multivariate Observation Sensitivity for a Hypothetical Flight 
Track 

The 850-hPa analysis sensitivity gradients generated using the NOGAPS 

adjoint (Fig. 1.2) are also used for this experiment. The domain has been limited to 20°N 

- 60°N, and 153°E - 142°W, which is sufficiently large to produce results that are 

equivalent to the larger domain in the previous example. The temperature, u- and v-wind 

analysis sensitivity gradients for this domain are plotted in Fig. 3.47.     Twenty-two 

observations of either temperatures or u- or v-winds are placed in a backwards "N" 

pattern across the analysis sensitivity gradient extrema in the eastern part of the domain 

(i.e., eastern North Pacific).   The observation and background error standard deviation 

values from the previous example are used here as well.      The background error 

correlation length scale value from NAVDAS (applied at 45° N) is used so that 
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Figure 3.47. As in Fig. 3.43, except NOGAPS analysis sensitivity gradients at 850 hPa 
for a more limited domain for (a) temperature, (b) u-wind, and (c) v-wind. The 
observation locations for the hypothetical flight track are given by the "+". See text for 
more details. 

Z,; =4.91Ax (where Ax = l° lat.).  The geostrophic coupling parameter |i = 1.0, and the 

wind divergence factor is set to v2 = 0.15. 

The total observation sensitivity measures for the temperature, u- and v- 

wind observations are obtained by applying (3.6) to (3.52a-c), and are plotted for a 

smaller domain of 161°W - 142°W and 35°N - 50° N in Fig. 3.48. In general, the results 

follow the general principles highlighted in earlier sections. The observation sensitivity 

measure is large where the analysis sensitivity gradient is also large in magnitude and 

spatial scale. Unlike the SOSM results of Fig. 3.46, the observation sensitivity is not 

dominated by contributions due to the temperature analysis sensitivity gradient. 

Consequently, it may be more difficult to understand the behavior of the total observation 

sensitivities. 
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Figure 3.48. Total observation sensitivity measure from (3.52a-c) and (3.6) for a set of 
22 observations indicated by the "+". The color scale is at the bottom; note the different 
scale. 

According to Fig. 3.48, relatively isolated observations can have large 

observation super-sensitivity (OSM > 1), even when the analysis sensitivity gradient is 

weak at that particular location. In addition, because of the multivariate phase shifts, the 

observation sensitivity measure can be large where the analysis sensitivity gradient is 

very small between two adjacent analysis sensitivity gradient sub-structures. Large 

observation sensitivity implies that the observation has the potential to make large 

changes to the analysis. When the observation is relatively isolated, the information from 

the observation will be spread to the surrounding gridpoints according to the structure of 

Kr and the background error covariances (see Fig. 3.33). Thus, it may not be desirable 

to have the few, more isolated observations contributing most to the analysis. These 

results suggest that simply taking observations along a flight path through the extrema is 

insufficient, and that it may be necessary to sample larger areas of the analysis sensitivity 
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gradient pattern to avoid abrupt observation density discontinuities in highly sensitive 

areas. 

d.        Multivariate Observation Sensitivity for a Hypothetical Swath of 
Satellite Observations 

The basic design of this experiment follows the previous experiment. In 

this example, 840 observations are distributed along a swath that bisects the two large- 

amplitude temperature analysis sensitivity gradient sub-structures (Fig. 3.49a). An 

observation of T, u, or v is located at every gridpoint within the swath, so that the 

horizontal resolution is 1° longitude or 78.5 km at 45°N. The width of the swath is 20° 

longitude or approximately 1600 km at 45°N. This gives a horizontal resolution similar 

to that available with the current polar-orbiting satellites. This swath would mimic a set 

of satellite observations if satellites directly measured temperature and if atmospheric 

winds were available from polar-orbiting satellites. The analysis sensitivity gradients for 

T, u, and v (with the observation locations indicated by a "+") are shown in Figs. 3.49a,b, 

and c, respectively. 

The nine partial observation sensitivities corresponding to (3.50a-i) are 

presented in Fig. 3.50. These patterns show that the observation sensitivity for the 

satellite swath follows the general principles discussed in earlier sections. For the three 

univariate components of the observation sensitivity (Figs. 3.50a,e,i), the observation 

sensitivity is nearly equal to the analysis sensitivity in the well-observed interior portions 

of the swath. However, some observation super-sensitivity occurs along the edges of the 

swath. The super-sensitivity is strongest when the spatial scale of the analysis sensitivity 

gradient is large, as for the temperature analysis sensitivity gradient (Fig. 3.50a).   The 
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Figure 3.49. As in Fig. 3.43, except NOGAPS analysis sensitivity gradients at 850 hPa 
for a more limited domain for (a) temperature, (b) u-wind, and (c) v-wind. The 
observation locations for the hypothetical satellite swath are given by the "+". See text 
for more details. 

cross-correlation components of the multivariate observation sensitivity (Figs. 3.40b-d,f- 

h) demonstrate the phase shifts between the observation and analysis sensitivities noted in 

earlier sections. The maximum temperature/u-wind observation sensitivity is displaced 

to the north and south of the u-wind analysis sensitivity gradient (Fig. 3.50b), which is 

consistent with the (tu) background error correlation model (Fig. 3.45b). Similarly, the 

maximum temperature/v-wind observation sensitivity is displaced to the east and west of 

the v-wind analysis sensitivity gradient (Fig. 3.50c), which is consistent with the (tv) 

background error correlation model (Fig. 3.45c). Similar phase shifts, which are due to 

the geostrophically-coupled background error covariances, can be seen in Figs. 3.50d,g as 

well.  Weaker phase shifts, which show the influence of the (wv) and (yuj background 

error correlations (Figs. 3.45f,h), are noted in Fig. 3.50f,h. 
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Figure 3.50. As in Fig. 3.41, except the observation sensitivity vectors for the 
hypothetical satellite swath from (3.50a-i) corresponding to the analysis sensitivity 
gradients in Fig. 3.49. (a) Univariate temperature, (b) temperature/u-wind, (c) 
temperature/v-wind, (d) u-wind/temperature, (e) univariate u-wind, (f) u-wind/v-wind, (g) 
v-wind/temperature, (h) v-wind/u-wind, and (i) univariate v-wind observation 
sensitivities. 
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The total observation sensitivities are shown in Fig. 3.51, and are 

dominated by the partial sensitivities to T, u, and v, given the temperature analysis 

sensitivity gradient. The total sensitivity of J to the temperature observations (Fig. 

3.51a) is similar in appearance to the temperature analysis sensitivity gradient in the well- 

observed interior of the swath. The multivariate phase shifts are clearly visible in Fig. 

3.51 and dominate the total u and v observation sensitivities. It is apparent from 

comparing Figs. 3.51a, 3.51b, and 3.51c that the largest sensitivities of / to a 

temperature observation do not occur in the same location as the largest u- or v-wind 

observation sensitivities. Likewise, the largest u- and v-wind observation sensitivities do 

not occur at the same location. For targeting, this implies that the optimal location for a 

temperature observation may not be the optimal location for wind observations. 

The observation super-sensitivity along the edges of the swath is clearly 

visible in Fig. 3.51. The edges of the satellite swath have an analogous effect as the 

coastline in Fig. 3.1. The largest row of Kr (not shown) in both magnitude and spatial 

extent corresponds to the observations along the edges of the swath, and this gives a 

strong projection of Kr onto the large-scale analysis sensitivity gradients. The resulting 

observation super-sensitivity implies that the observations along the edge of a satellite 

swath, because of their large sensitivity, have much larger potential to significantly 

influence the analysis. This result is significant because observations at the edges of 

satellite swaths tend to be less accurate than the nadir observations for a number of 

reasons (not discussed here). As discussed earlier, the information from an observation is 

spread to the surrounding observations according to the Kaiman gain matrix K. 
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Figure 3.51. Total observation sensitivities for the hypothetical satellite swath from 
(3.52a-c) for (a) temperature, (b) u-wind, and (c) v-wind. The color scale is at the 
bottom. 

Consequently, the information from the less accurate observations at the edge of the scan 

will be extrapolated to the data-void regions of the domain, while the more accurate 

observations at the center of the domain will have only a local effect. These results argue 

for observation errors that vary as a function of the scan (swath) position. 

e. The Marginal Observation Sensitivity Vector 

The single observation sensitivity map (SOSM) was used in earlier 

examples to compute the sensitivity to a single observation at each gridpoint in the 

domain. Such a map may then be used to find the location where a single targeted 

observation would have the greatest potential impact. However, the SOSM assumes that 

targeting occurs in a region with no other observations. In reality, truly data-void regions 

are probably non-existent because of good global data coverage by polar-orbiting 

satellites. 
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The marginal observation sensitivity vector takes into consideration the 

presence of other observations. Suppose that M pre-existing observations are available in 

a domain with N gridpoints. The probe observation, which has the error characteristics of 

the targeted observing system, is placed sequentially at each grid point and the 

observation sensitivity for the probe observation is computed, taking into account the 

other M observations. Computationally, this requires the observation sensitivity (2.8a) to 

be computed N times, and each solution requires (effectively) inverting the 

(M +1) x (M +1) matrix (HPAH
r +R)1. 

An example of the marginal (total) observation sensitivity for the 

hypothetical flight track (the pre-existing observations) of Fig. 3.48 is shown in Fig. 3.52, 

and may be compared to the single observation sensitivity map of Fig. 3.46 (although 

those plots are for the larger domain). The temperature, u- and v- wind analysis 

sensitivity gradients are the same as in Fig. 3.47. The sensitivity to the single probe 

observation (Fig. 3.52) is substantially reduced when other observations are present. In 

particular, the total sensitivity to a single temperature observation (Fig. 3.52a) is much 

less to the east and west of the pre-existing flight track. Furthermore, the small-scale 

negative temperature analysis sensitivity gradient substructure (Fig. 3.47a) is now 

sensitive to a single temperature observation (as indicated by the light blue shading in the 

center of the flight track), whereas it was not when the pre-existing observations were not 

present (e.g., Fig. 3.46a). These results clearly demonstrate the importance of taking into 

account the presence of other observations in the targeting region, and how those 

observations are used by the analysis. 
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Figure 3.52. The total marginal observation sensitivity vectors for the hypothetical flight 
track of observations and a single probe observation for (a) temperature, (b) u-wind, and 
(c) v-wind. The color scale is at the bottom. The values have been multiplied by 0.056. 

4.        Summary of Two-Dimensional Multivariate Observation Sensitivity 

The two-dimensional multivariate observation sensitivity results are consistent 

with the one-dimensional univariate (Chapter IH.C) and multivariate (Chapter DID) 

results. The largest univariate component of the observation sensitivity occurs where the 

analysis sensitivity gradient is also a maxima/minima.    The largest cross-correlation 

components of the observation sensitivity tend to be phase shifted relative to the analysis 

sensitivity gradient extrema. Both the phase shifts and the signs of the observation 

sensitivity were shown to be consistent with the background error correlation model that 

assumes that the background errors are geostrophic and non-divergent. In general, the 

total observation sensitivity is dominated by the partial sensitivities involving the 

temperature analysis sensitivity gradient. Thus, the total sensitivity to a temperature 

observation is largest where the temperature analysis sensitivity gradient is also largest, 
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and the total sensitivities to the u- and v-wind observations tend to be phase shifted 

relative to the temperature analysis sensitivity gradient extrema. One consequence of the 

multivariate phase shifts is that the maximum sensitivity to a temperature observation 

does not occur where the sensitivity to a u- or v-wind observation is a maximum, and 

suggests that targeting exercises may wish to consider placing adaptive observations 

accordingly. 

Overall, the greatest observation sensitivity occurs for large amplitude analysis 

sensitivity gradients when the spatial scales of Kr and the analysis sensitivity gradient 

are similar. The observation sensitivity is much less when the analysis sensitivity 

gradient is small scale, even though the amplitude may be large. If the observation is 

located near analysis sensitivity gradient sub-structures with opposing sign, the 

contributions to the observation sensitivity may also be of opposing sign, so that a large 

degree of cancellation occurs and the observation sensitivity is very small. Large values 

of observation sensitivity tend to occur when the observations are relatively isolated or 

there is an abrupt discontinuity in the density of the observations, even if the analysis 

sensitivity gradient is relatively weak at the observation location. Similar phenomena 

occurred at the coastline for the one-dimensional examples (Chapters IH.C.1 and Chapter 

in.D.2), and for the two-dimensional multiple observation examples (Chapter m.E.3.a). 

The results imply that, for adaptive targeting, one may wish to sample both the large- 

spatial scale analysis sensitivity patterns and the large amplitude, small-scale analysis 

sensitivity sub-structures. The results also suggest that it may be necessary to sample 

larger areas of the analysis sensitivity gradient pattern to avoid abrupt observation density 

discontinuities in highly sensitive areas. 
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This section also discussed the point that limited area calculations may not agree 

with global observation sensitivity calculations if the grid boundaries for the limited 

domain problem intersect significant values of analysis sensitivity. Therefore, any 

limited area targeting applications should have sufficient horizontal extent so that large 

analysis sensitivity gradients are well contained within the grid boundaries. 

The marginal observation sensitivity vector, which determines the sensitivity to a 

single observation given the presence of pre-existing observations, shows that the 

sensitivity to a single observation is considerably reduced when the pre-existing 

observations are taken into account. This result clearly demonstrates that targeting 

applications must consider the entire suite of observations, and not just the adaptive 

observations. 
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IV. EXPLORATION OF NAVDAS OBSERVATION ADJOINT 
SENSITIVITY FOR THE NORTH PACIFIC OCEAN ON 

7 FEBRUARY 1999 

Observation sensitivity using simplified one- and two-dimensional analysis 

systems and idealized analysis sensitivity gradients was examined in Chapter IH. In this 

chapter, the full three-dimensional multivariate observation sensitivity problem is 

investigated using the adjoint of NAVDAS with three-dimensional analysis sensitivity 

gradients computed using the NOGAPS adjoint. 

A.       A BRIEF DESCRIPTION OF NAVDAS 

NAVDAS (NRL Atmospheric Variational Data Assimilation System) is a three- 

dimensional variational data assimilation system used to generate atmospheric analyses 

for naval applications (Daley and Barker 2000a, 2000b). It has been designed as a 

replacement for the current operational multivariate optimum interpolation (MVOI) 

analysis at Fleet Numerical Meteorology and Oceanography Center (FNMOC). The 

operational analyses are primarily used to specify the global and regional initial 

conditions for weather prediction using the Navy Operational Global Atmospheric 

Prediction System (NOGAPS; Hogan and Rosmond 1991) and the Coupled Ocean and 

Atmospheric Mesoscale Prediction System (COAMPS; Hodur 1997). The analyses (and 

forecasts) are used as environmental inputs to various naval applications, such as tropical 

storm motion forecasts, optimum ship and aircraft route planning, and electro- 

magnetic/electro-optical tactical decision aids to determine the index of refraction and 
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duct locations.   The meteorological analyses and forecasts are also used as input for 

military operations and missile flight tests. 

Three-dimensional variational data assimilation systems (3DVAR) have several 

advantages over the MVOI algorithm. The solution is obtained globally so that data 

selection is not required and a seamless analysis is produced. Second, the 3DVAR 

algorithm can incorporate non-standard observations such as satellite radiances, total 

precipitable water or wind speed in a rigorous and physically consistent manner. Finally, 

3DVAR algorithms allow greater flexibility in specifying the background error 

covariances. 

The NAVDAS background error covariance formulation is based on a vertical 

eigenvector modal decomposition. This formulation permits considerable local 

anisotropy, such as vertical and modal variation of the horizontal correlation scales, 

horizontal variation of the vertical correlation lengths, and vertical variation of the 

mass/divergent wind coupling. 

NAVDAS has been designed to be flexible in several respects. The computer 

codes are essentially the same for the global and mesoscale forecast models. The 

mesoscale analysis system is quickly relocatable to different areas of naval interest. 

Moreover, the code is designed to run on either massively-parallel central site computers, 

or local site workstations (such as shipboard). NAVDAS has also been designed to work 

in regions where conventional observations may be denied, and to utilize classified 

observations. 
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NAVDAS contains a number of diagnostic features for assessing the system 

performance and for observation quality control, including the adjoint of the analysis 

system. Finally, one of the most important features of NAVDAS is that it is well 

documented (Daley and Barker 2000a). A summary of NAVDAS may be found in Daley 

and Barker (2000b). 

The analysis problem to be solved is given by (2.2) and (2.3), or 

xa-xb=PfeH
r(HPX + R)_1(y-Hxb). (4.1) 

The numerical solution may be broken into two steps. First, define the vector 

d = y-Hxb, (4.2) 

and solve the linear system 

(HPiH
r+R)z = d, (4.3) 

where z is the vector to be determined. Next, perform the post-multiplication step, 

xa-xb=PiH
rz. (4.4) 

When (4.1) is posed following (4.2) - (4.4), the matrix 

A = (HP6H
r+R) (4.5) 

does not need to be inverted, and the solution of (4.1) instead requires solving the linear 

system 

Az = d. (4.6) 

The major computational difficulty then becomes solving the linear system (4.6). 
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B.       THE NAVDAS ADJOINT 

Strictly speaking, only the observation locations and observation and background 

error covariances are required to compute the observation and background sensitivity. 

The NAVDAS adjoint uses the observations and background fields so that the NAVDAS 

quality control and data selection procedures are used. This way, the sensitivity of J to 

the actual observations used in the NAVDAS analysis is computed.   The NAVDAS 

adjoint uses most of the same computer code as the NAVDAS system, and relatively 

simple modifications were required to compute the observation sensitivity.    These 

differences include reading in the analysis sensitivity gradient, redefining the post- 

multiplication matrix, and changing the order of the post-multiplication and linear system 

solver steps. The NAVDAS solution method is outlined in the next sub-section. 

1.        The NAVDAS Adjoint Solution Method 

The observation sensitivity problem to be solved is given by (2.8a), or 

dJ/dy = (HP,Hr + R)-1 HPA dJ/dxa. 

The numerical solution may be broken into two steps, following the NAVDAS solution 

method described in Chapter IV .A. First, perform the pre-multiplication step that is 

analogous to the forward analysis "post-multiplication step" 

d = HPbdJ/dxa. (4.7) 

Next, solve the linear system 

(HPftH
r+R)97/ay = d, (4.8) 

where dJ/dy is the vector to be determined. The matrix (HPÄH
r +R)"1 is symmetric 

and therefore self-adjoint (i.e., operates in the same way in the forward and adjoint 
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directions). The main difference between the forward and adjoint code is with the post- 

multiplier (4.4) versus (4.7). 

The vertical eigenvector decomposition used to define the background error 

covariance matrices in the post-multiplier HPfc introduces a minor complication, which is 

handled as follows. Consider a single vertical column of the analysis sensitivity gradient 

r and a single observation profile q. Then, the adjoint post-multiplication step may be 

written as 

q = HPfcr = E2D12Efr, (4.9) 

where the subscripts "1" and "2" denote the locations of elements of the vectors r and q, 

respectively, and the forward operator H has been incorporated into E2. The eigenvector 

matrices are given by Ei and E2, and D12 is a diagonal matrix that is a function of the 

vertical mode number and the horizontal background error correlations between the two 

vectors, r and q.1 Equation (4.9) is the transpose of the forward post-multiplication 

operation (4.4). The matrix D12 is symmetric and therefore self-adjoint. The operators E2 

and Ei (and their transposes) already exist in the forward code, so the adjoint code simply 

requires that they be applied in a different order. 

2.        The   Comparability   between   the   Two-Dimensional   Observation 
Sensitivity and the NAVDAS Adjoint Sensitivity Problems 

The purpose of this section is to determine whether the observation sensitivity 

computed using the NAVDAS adjoint behaves as expected from the theory developed in 

Chapters II and m.   For a single observation, the sensitivity was shown to vary as a 

1 See Daley and Barker (2000a) for a complete description of the vertical 
eigenvector decomposition of the background error covariance matrices. 
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function of the background error correlation length scale, the analysis sensitivity gradient 

length scale, and of the ratio of the observation error variance to the background error 

variance. The two-dimensional observation sensitivity and the three-dimensional 

NAVDAS adjoint observation sensitivity are fundamentally different problems in several 

important respects that limit comparisons between the two systems. 

For the two-dimensional multivariate examples in Chapter III.F.3, the NOGAPS 

850-hPa temperature analysis sensitivity gradient is used as a proxy for the height 

analysis sensitivity gradient, and the analysis variable is temperature rather than height. 

As discussed in Chapter III.F.3, the geostrophic relationship relates the horizontal 

geopotential height field (not temperature field) to the u- and v-wind fields. The physical 

link between the temperature and wind fields is through the thermal wind equation, which 

cannot be properly represented with a two-dimensional horizontal problem, so that 

resulting analysis problem is instructive, but physically inconsistent. 

Other major differences between the NAVDAS adjoint and the two-dimensional 

analysis system are that the NAVDAS adjoint analysis sensitivity gradients and 

background error covariances are three-dimensional, so that the sensitivity to a single 

observation will be affected by the analysis sensitivity gradients above and below the 

level of the observation (through the vertical background error covariances). 

Consequently, the two-dimensional and the NAVDAS adjoint observation sensitivity are 

not likely to exhibit the same behavior as a function of l^ and Ls. Note that this does 

not imply that the theory developed in Chapter m does not apply to the NAVDAS 
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adjoint, only that direct comparisons between the two-dimensional analysis adjoint and 

the NAVDAS adjoint must be made carefully. 

From (3.9) and (3.11), the single observation sensitivity is given by 

so that the change of the observation sensitivity as a function of £r/£b is proportional to 

the ratio of the background error variance to the total error variance, or 

E = sl/(el+e2
r) = l/(\+e2

r/e2
b), (4.11) 

which is independent of the specified analysis sensitivity vector and the background error 

covariance functions. Therefore, this aspect of observation sensitivity was selected to 

compare the NAVDAS adjoint observation sensitivity to the two-dimensional observation 

sensitivity. 

A single temperature observation is placed at the center (43.0°N, 154.0°W) of the 

large amplitude, small-scale 850-hPa temperature analysis sensitivity gradient maxima 

(Fig. 4.1c). The observation error is set to the NAVDAS value of er =1.3°K, which is 

appropriate for an automated aircraft temperature observation. The background 

temperature error variance is set to the NAVDAS value at the observation location, or 

eb = 2.67 °K.     The background errors  are homogeneous for the  two-dimensional 

univariate problem, but vary spatially for the NAVDAS adjoint (see Daley and Barker 

2000a).     The NAVDAS  adjoint univariate temperature observation  sensitivity is 
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simulated using the NOGAPS three-dimensional temperature analysis sensitivity 

gradients, while the u- and v-wind analysis sensitivity gradients are set to zero. 

Three sets of experiments are conducted. For the first experiment (EXP1), the 

observation error is set to 10% of the observation error or er =0.13 °K. The observation 

error equals 1.3 °K (or 100%) for the second experiment (EXP2), and is doubled (to 2.6 

°K or 200%) for the third experiment (EXP3). 

The univariate temperature single observation sensitivity results using the 

NAVDAS adjoint are summarized in Table 4.1, and the two-dimensional univariate 

temperature single observation sensitivity results are summarized in Table 4.2. In both 

cases, the observation sensitivity is largest when the observations are assumed to be 

accurate (EXP1) and decreases as the observation error increases (EXP2 and EXP3). The 

changes in the observation sensitivities (column 4) for the NAVDAS adjoint (Table 4.1) 

and the two-dimensional system (Table 4.2) are in excellent agreement with the changes 

predicted by (4.10) and given in column 6. Moreover, the variations of the observation 

sensitivity as a function of observation error for the NAVDAS adjoint and the two- 

dimensional observation sensitivity are in excellent agreement with each other. These 

results agree well with the one-dimensional univariate observation sensitivity results 

presented in Fig. 3.7, which is a further indication that the NAVDAS adjoint is 

performing as anticipated. 

The total observation sensitivity for a single temperature observation (3.52a) was 

computed for the NAVDAS adjoint and the two-dimensional analysis system. The 

experimental design is the same, except that the u- and v-wind analysis sensitivity 
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gradients from NOGAPS are used. The results, which are summarized in Table 4.3 for 

the NAVDAS adjoint and Table 4.4 for the two-dimensional system, show that the 

variations of the total temperature observation sensitivities agree well with the univariate 

observation sensitivity variations, which implies that the multivariate observation 

sensitivity components agree between the two systems. 

Table 4.1. Change in the univariate sensitivity to a single temperature observation for a 
specified change in the observation error for the NAVDAS adjoint. Values in columns 2- 
4 are, respectively, the observation error standard deviations (er), E from (3.11), and the 
changes in E, expressed as a ratio, from EXP1. Values in column 5 are the observation 
sensitivities and values in column 6 are the changes in the observation sensitivity, 
expressed as a ratio, from EXP1. 

er 
E AE fromEXPl dJ/dy AdJ/dy fromEXPl 

EXP1 0.13°K 0.998 1.0 0.223 1.0 

EXP2 1.3°K 0.808 0.810 0.180 0.810 

EXP3 2.6°K 0.513 0.514 0.114 0.511 

Table 4.2. As in Table 4.1, except for the change in the univariate sensitivity to a single 
temperature observation for a specified change in the observation error for the two- 
dimensional analysis system. 

er 
E AE fromEXPl dJ/dy AdJ/dy fromEXPl 

EXP1 0.13°K 0.998 1.0 9.611 1.0 

EXP2 1.3°K 0.808 0.810 7.782 0.810 

EXP3 2.6°K 0.513 0.514 4.936 0.514 
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Table 4.3. As in Table 4.1, except for the change in the total sensitivity to a single 
temperature observation for a specified change in the observation error for the NAVDAS 
adjoint. 

£r 
E A£ fromEXPl dJ/dy A37/9y fromEXPl 

EXP1 0.13°K 0.998 1.0 0.216 1.0 

EXP2 1.3°K 0.808 0.810 0.175 0.810 

EXP3 2.6°K 0.513 0.514 0.111 0.514 

Table 4.4. As in Table 4.3, except for the change in the total sensitivity to a single 
temperature observation for a specified change in the observation error for the two- 
dimensional analysis system. 

£, E AE from EXP1 dJ/dy Aa//9y fromEXPl 

EXP1 0.13°K 0.998 1.0 5.789 1.0 

EXP2 1.3°K 0.808 0.810 4.688 0.810 

EXP3 2.6°K 0.513 0.514 2.973 0.514 

The observation sensitivity values for the two cases differ by more than an order 

of magnitude. Several experiments were conducted to understand the reasons for this 

difference, and it was concluded that the differences are most likely due to the 

contributions (through the background error correlation) to the NAVDAS adjoint 

observation sensitivities from the analysis sensitivity gradients at the other pressure 

levels. It is interesting to note that the ratio of the NAVDAS adjoint observation 

sensitivity to the corresponding two-dimensional observation sensitivity is the same for 

all three experiments. Likewise, the ratio of the NAVDAS adjoint total temperature 

sensitivity to the two-dimensional total temperature sensitivity is constant for all three 

experiments. 
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The results from this section indicate that the NAVDAS adjoint observation 

sensitivity results are consistent with the one- and two-dimensional observation 

sensitivity experiments in Chapter DDL 

C.  MEASURES OF POTENTIAL OBSERVATION FORECAST IMPACT 
The purpose of this subsection is to define a measure that estimates the potential 

contribution of an observing platform to the change in the forecast aspect /. Such 

information could be used to assess the relative efficiency of various adaptive observation 

deployments, to evaluate the existing observing network, or to design new observing 

systems. 

The change in the forecast aspect J is defined as the projection of the analysis 

error (ea) onto the analysis sensitivity gradient, or 

S7=Eö
r!^-. (4.12) 

The expected change in J may be written as 

while the expected variance of the change in the forecast aspect J is 

'a/V 

v*./ 
T\dJ ((«/)')= £    <Ml>£-. (4.14) 

where (£„£„) is the analysis error covariance matrix given by 

Pfl =Pfc-PfcH
r(HPfcH

r +R)   HPfc. (4.15) 
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The second term in (4.15) represents the reduction to the background error covariances 

due to the presence of the observations. Combining (4.14) with (4.15) gives 

««""}-(£ 
V dJ_ 

3x„ 
'a/* 
v^y 

RHr(HF,Hr+RrHR 
dJ_ 

a*. 

which may be expanded as 

HH dj \
T 

dx 3 J 

dJ_ 
ax, 

ax. 

\T 

PbB
T(HPbR

T +R)-(HP6H
r +R)(HP,Hr +R)1HP,^. 

ox„ 

(4.16) 

(4.17) 

Substituting the observation sensitivity definition (2.8a) into (4.17) gives 

((«0> 
vaxay 

37 
ax. (HPX + R)^. 

dy 
(4.18) 

which may be interpreted as the expected variance of the change in the forecast aspect 

due to the background and the observations. Equation (4.18) may be divided into 

separate contributions from the background and the observations, or 

((S/)2) = ((&/)2}r((o7)2}ö, (4.19) 

where 

and 

<(*"!= 
'a/'1 T   ■ 

v*., 

a/_ 
ax' 

(4.20) 
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HV 37 
(HP.H'+R)^, (4.21) 

where the subscripts (b) and (o) refer to the background and observations, respectively. 

Equation (4.21) may be interpreted as the reduction in the expected variance of the 

change in J due to the observations. 

The reduction of the expected variance of 67 computed from (4.21) is a scalar 

number corresponding to the entire set of observations. It may also be computed for 

specified subsets of observations, such as radiosondes, cloud-drift winds, or different 

adaptive observation configurations, so that their relative contributions can be assessed. 

For targeting applications, ((67) ) can be used to rank different adaptive observation 

configurations according to their potential impact on J. It is important to note that the 

scalar numbers given by (4.18) or (4.21) are always positive, and that the actual impact 

(i.e., sign of 67) cannot be determined except by assimilating the observations and 

computing the forecast.   It is also important to realize that the term (HP6H
r + R) in 

(4.18) and (4.21) always involves the entire set of observations, so that changing the 

properties (location or assumed error variance) of even one observation will change the 

scalar measure for all other observations. 

Doerenbecher and Bergot (2000) define an impact function 

67 = 
vay0, 

(y0-H0(xb)), (4.22) 
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where the subscript (o) refers to the selected observation platform. The impact function 

gives an estimate of the influence of a specified observation type on the forecast aspect 

J.    Strictly speaking, this measure can only be computed after the observations have 

been taken, as the sign of 57 cannot be known in advance. 

D.       OBSERVATION ADJOINT SENSITIVITY RESULTS 

The analysis sensitivity gradients were computed in an a posteriori sense in that 

the cost function J is the energy-weighted forecast error for the NOGAPS forecast 

starting from the FNMOC/NOGAPS operational initial conditions valid at the target time 

of 00 UTC 7 February 1999 and verifying 72 hours later at 00 UTC 10 February 1999. 

This case corresponds to the largest 72-h forecast error in a forecast verification area 

centered over the western United States and Canada and given by (30°N - 60°N and 

150°W - 100°W) for a three-year period from 1997 - 1999 (R. Langland, NRL - 

Monterey, personal communication). The analysis sensitivity gradients for the 850-, 

700-, 500-, and 400-hPa levels are shown in Figs. 4.1 through 4.4, respectively. The 

amplitudes of the analysis sensitivity gradients are largest at these levels, and decrease 

above and below these levels. 

The high amplitude, small-scale temperature analysis sensitivity gradient sub- 

structure centered about 43°N and 155°W in Fig. 4.1c has maximum amplitude near 850 

hPa and weakens as it tilts westward with increasing height (Figs. 4.2c - 4.4c). In 

contrast, the moderate amplitude, large-scale temperature analysis sensitivity gradient 

sub-structure centered about 40°N and 175°W in Fig. 4.1c has maximum amplitude near 
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Figure 4.1. Sensitivity of the 72-h NOGAPS energy-weighted forecast error with respect 
to the FNMOC/NOGAPS 850-hPa initial (a) u-wind component, (b) v-wind component, 
and (c) temperature fields valid at the target time of 00 UTC 7 February 1999. The 
forecast verification area (not shown) is centered over the western United States and 
Canada (30 °N - 60°N and 150°W - 100°W). 
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Figure 4.2. As in Fig. 4.1, except for the sensitivity of the 72-h NOGAPS energy- 
weighted forecast error with respect to the FNMOC/NOGAPS 700-hPa initial (a) u-wind 
component, (b) v-wind component, and (c) temperature fields valid at the target time of 
00 UTC 7 February 1999. 
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Figure 4.3. As in Fig. 4.1, except for the sensitivity of the 72-h NOGAPS energy- 
weighted forecast error with respect to the FNMOC/NOGAPS 500-hPa initial (a) u-wind 
component, (b) v-wind component, and (c) temperature fields valid at the target time of 
00 UTC 7 February 1999. 
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Figure 4.4. As in Fig. 4.1, except for the sensitivity of the 72-h NOGAPS energy- 
weighted forecast error with respect to the FNMOC/NOGAPS 400-hPa (a) initial 
temperature, (b) u-wind component, and (c) v-wind component fields valid at the target 
time of 00 UTC 7 February 1999. 
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500 hPa and strong westward (baroclinic) vertical tilt. The spatial scale of the large-scale 

temperature analysis sensitivity sub-structure increases with increasing height (up to near 

500 hPa). The v-wind analysis sensitivity gradient extrema have similar amplitude for 

the four pressure levels and tend to shift farther west with increasing height. The largest 

amplitudes for the 850 hPa and 700 hPa u-wind analysis sensitivity gradient are 

associated with the temperature and v-wind analysis sensitivity gradient extrema, while 

the largest amplitudes at 500 and 400 hPa are associated with the northern branch of the 

subtropical jet south of 40°N. 

1.        Experimental Design 

The observations are derived from the global meteorological reports available 

operationally at FNMOC and valid for a six-hour window centered on the target time. 

While the actual observed values and background fields are not required to compute the 

observation and background sensitivities, the observed values and background fields are 

required for the NAVDAS analysis pre-processing and observation quality control (QC) 

algorithms. In this way, the NAVDAS adjoint computes the sensitivities to the 

observations and background taking into account the actual observations used by the 

NAVDAS assimilation cycle (with the exception of any hypothetical targeted 

observations). The NAVDAS global configuration with one-degree lat./long. grid 

spacing and 16 mandatory2 pressure levels from 1000 hPa to 10 hPa is used, although the 

input NOG APS adjoint temperature, u- and v-wind analysis sensitivity gradients are 

2 The mandatory or standard pressure levels are 1000, 925, 850, 700, 500, 400, 
300, 250,200,150,100,70,50,30, 20, and 10 hPa. 
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available only for the mandatory pressure levels up to 100 hPa. The analysis sensitivity 

gradients are assumed to be zero above 100 hPa, which is appropriate since the analysis 

sensitivity gradients for this case are maximized in the lower to mid-troposphere and are 

small in the upper troposphere. 

The observations are subjected to extensive QC, particularly for radiosondes, 

TOVS brightness temperatures, and aircraft temperatures and winds. In addition, 

observations with high spatial density are thinned to remove data redundancy and to 

lessen the computational expense. For example, every third DMSP (Defense 

Meteorological Satellite Program) SSM/I (Special Sensor Microwave Imager) wind speed 

retrieval is used, which corresponds roughly to a spacing of one degree between the 

observations. The SSM/I total precipitable water retrievals are not used since the 

sensitivity of J with respect to moisture observations is not considered. The infrared and 

visible cloud-drift winds, and the water vapor winds, have high spatial and temporal 

density with non-uniform spatial coverage. In the future, sophisticated algorithms will be 

implemented to thin these observations. For the present, every third cloud or water vapor 

wind is used. The aircraft winds are thinned by specialized aircraft QC algorithms. 

During the winter months of 1999, numerous WSR flights sampled targets 

defined by NCEP for the eastern North Pacific Ocean (Szunyogh et al. 2000). One of the 

targeting sorties coincides with the period of interest (00 UTC 7 February 1999). The G- 

IV aircraft deployed out of Hickam AFB, Honolulu, Hawaii, released 11 dropsondes. 

These observations are included in the observation sensitivity calculations. 
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A summary of the observations valid for the 3-h time window centered on 00 

UTC 7 February 1999 is given in Table 4.5. Many observations are rejected because they 

do not fall within the 3-h analysis time window. The large numbers of rejected and 

thinned radiosonde observations are because temperatures rather than geopotential 

heights are used by NAVDAS, and removal of redundant radiosonde/ pilot balloon 

reports. The large number of rejected and thinned TIROS3 Operational Vertical Sounder 

(TOVS) brightness temperatures are due to unused TOVS channels, or QC rejected 

observations over snow, ice or land. Of the nearly one million global available 

observations, 208242 are used by the NAVDAS adjoint. 

Table 4.5. Summary of the observations valid for the 6-h time window centered on 00 
UTC 7 February 1999. Column 1 denotes the observing platform; column 2 is the number 
of observations; column 3 is the number of rejected or thinned observations, and column 
4 gives the total number of observations. 

Observation type Accepted Rejected or Thinned Total 

Surface land 33872 38022 71894 

Surface marine 6222 5233 11455 

Aircraft reports 11799 25382 37181 

Cloud and water vapor winds 11124 38123 49247 

SSM/I windspeed 2698 17200 19898 

Radiosonde and pilot balloons 73852 28567 102419 

Automated aircraft ascent and descent 5910 6940 12850 

TOVS brightness temperatures 62765 589852 652617 

SSM/I total precipitable water 0 19903 19903 

Total 208242 707250 977464 

3 Television Infra-Red Observation Satellite 
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2.        Discussion of NAVDAS Observation Sensitivity Results 

The magnitudes of the observation sensitivities for temperature, u- and v-wind 

observations from 450 - 550 hPa (for all instruments except TOVS) are in Fig. 4.5. The 

inverted "V" pattern of observations corresponds to the G-IV flight. Overall, the 

observation sensitivity is largest for observations that are relatively isolated, although 

considerable variation occurs. In Chapter HI, the row of the transposed Kaiman gain 

matrix corresponding to an observation of interest was plotted to help understand 

observation sensitivity. Even though KT is not available explicitly for the NAVDAS 

adjoint (see Chapter IV.B), the behavior of the observation sensitivity can be inferred 

based on the results of Chapter HI. The NAVDAS adjoint observation sensitivity is 

illustrated by considering several observations in detail. 

The largest sensitivity (red circle) to a u-wind observation for the 450 - 500-hPa 

layer (Fig. 4.5a) occurs for the water vapor wind observation near 35°N, 178°W, and 

appears to be associated with the high-amplitude, large-scale u-wind analysis sensitivity 

gradients at 500 and 400 hPa (Figs. 4.3a and 4.4a) that are related to the northern branch 

of the subtropical jet. The corresponding v-wind observation sensitivity is very weak, 

largely because the v-wind analysis sensitivity gradients near the observation are also 

weak. 

The largest sensitivities (red circle) to v-wind observations (Fig. 4.5b) occur for 

the water vapor winds near 45°N, 169°E, and 43°N, 178°E. These observations are 

located near the  extrema of the high-amplitude,  large-scale temperature analysis 
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Figure 4.5. Magnitude of the sensitivity of the forecast aspect J to the (a) u-wind 
observation components, (b) v-wind observation components, and (c) temperature 
observations between 450 and 550 hPa valid at 00 UTC 7 February 1999 for the control 
plus G-rV adaptive observations (CTL+G-IV) case. The letter "a" indicates the largest u- 
wind observation sensitivity, while the "b" and "c" indicate the largest v-wind 
observation sensitivities, and the "s" indicates the Shemya radiosonde station. 
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sensitivity gradients at 700, 500, and 400 hPa (Figs. 4.2c, 4.3c, 4.4c). The 500-hPa v- 

wind analysis sensitivity gradients are large in amplitude and scale near the observation at 

45°N, 169°E, but not near the observation at 43°N, 178°E. The results from Chapter 

m.F.3 suggest that the wind observation sensitivities are dominated by the projection of 

Kr onto the temperature analysis sensitivity gradient, with weaker contributions from the 

univariate wind components (e.g., the projection of Kr onto the v-wind analysis 

sensitivity gradient). Therefore, the large v-wind observation sensitivities are probably 

due to the large temperature analysis sensitivity gradients with lesser contributions from 

the v-wind analysis sensitivity gradients. The observation sensitivity is also a function of 

the analysis sensitivity gradients at adjacent levels through the background error 

covariances. The results in Chapter HI suggest that the largest wind observation 

sensitivities are phase-shifted with the extrema of the temperature analysis sensitivity 

gradient. However, it is not possible to ascertain whether this phase shift occurs for the 

NAVDAS adjoint observation sensitivity results because of the westward tilt with height 

of the temperature analysis sensitivity gradients and the effects of the vertical background 

error correlations on the observation sensitivities. Higher observation density may also be 

needed to determine whether the phase shift exists. 

The sensitivity to the 500-hPa temperature observation (Fig. 4.5c) from the 

conventional radiosonde launched from Eareckson Air Station on Shemya Island (located 

at the westernmost point (52.72°N, 174.10°E) in the Aleutian Island chain approximately 

2400 km southwest of Anchorage, AK) is more than three times greater than the next 
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largest 500-hPa temperature observation sensitivities for Nome (64.50°N, 165.43°W), 

Bethel (60.78°N, 161.80°W), and Sand Point (55.20°N, 167.72°W), and is approximately 

ten times larger than the maximum sensitivity to a G-IV dropsonde temperature. The 

results from Chapter ELF demonstrated that the observation sensitivity is maximized 

when an accurate temperature observation is placed near the center of a large amplitude 

temperature analysis sensitivity gradient with a spatial scale similar to the background 

error correlation length scale. The 500-hPa temperature analysis sensitivity gradient near 

Shemya (Fig. 4.3c) is large in amplitude and has a spatial scale similar to that of the 

NAVDAS background error correlation length scale of 385 km, and these factors 

contribute to the large sensitivity to the 500-hPa temperature observation. Two additional 

factors that further enhance the temperature observation sensitivity are that the 

observation is relatively isolated and that the observation is assumed to be much more 

accurate than the background temperature error (0.90 °K versus 1.73 °K). 

These results support the conclusions from Chapter HI that the observation 

sensitivity is largest for relatively isolated, accurate observations near large-scale analysis 

sensitivity gradients. The relatively weak observation sensitivities noted for the G-rV 

adaptive observations occur because the G-IV flight did not sample the large-scale 

analysis sensitivity gradients. 

The magnitudes of the sensitivities of / to the TOVS Microwave Sounding Unit 

(MSU) channel 2 brightness temperatures, which have a broad vertical weighting 

function that peaks near 700 hPa (Smith et al. 1979), are shown in Fig. 4.6.   The 
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Figure 4.6. Magnitude of the sensitivity of the forecast aspect / to the TOVS MSU 
Channel 2 brightness temperatures valid at 00 UTC 7 February 1999 for the control plus 
G-IV adaptive observations (CTL+G-IV) case. The time-window data discontinuities are 
indicated by the letter "t" (see text for more details). The open circles correspond to 
magnitudes less than 3.0. 
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maximum observation sensitivities occur where large analysis sensitivity gradients 

(amplitude and scale) coincide either with an abrupt discontinuity in the observation 

density, or with a relatively isolated observation. Observation discontinuities frequently 

occur with TOVS brightness temperatures for a variety of reasons. For example, polar- 

orbiting satellite instruments such as TOVS observe the atmosphere continuously, and the 

observations are selected or rejected according to the time difference between the 

observations and analysis. Two instances of time-window data discontinuities are 

indicated by the letter "t" in Fig. 4.6. The data discontinuity near 45°N, 175°E that occurs 

in the middle of the large 700-hPa temperature analysis sensitivity gradient is associated 

with large observation sensitivities. 

Other discontinuities in the TOVS brightness temperatures are associated with 

larger observation errors, and these have important implications for data assimilation 

systems. For example, the TOVS brightness temperatures over land and ice are more 

difficult to assimilate properly and are eliminated in the present NAVDAS configuration, 

which creates a discontinuity in the brightness temperature observation density along the 

coastlines and ice-edge boundaries. The brightness temperatures along these boundaries 

contain contributions from the different surface types and have larger representativeness 

errors than the brightness temperatures over the open oceans. Abrupt changes in the 

data density also occur for the less accurate observations along the edges of the satellite 

scan (cf., Chapter III.F.3.d). If the MSU observation errors are incorrectly assumed to be 

spatially homogeneous, and the data discontinuities coincide with large-scale analysis 
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sensitivity gradients, the sensitivity to the relatively inaccurate observations along the 

data discontinuity will be larger than the sensitivity to the more accurate (data dense) 

observations. This implies that the less accurate observations have greater potential to 

change the forecast aspect J, and influence the analysis. As demonstrated in Chapter 

m.C.4.b and Chapter HLE.3.C, increasing the assumed observation error variance 

decreases both the observation sensitivity and the influence of the observation on the 

analysis. These results, which illustrate a non-targeting application of the data 

assimilation adjoint theory, highlight the importance of properly specifying the 

observation errors. 

E.       TARGETING STRATEGIES WITH THE NAVDAS ADJOINT 

A hypothetical flight path that can be achieved by the NOAA (National Oceanic 

and Atmospheric Administration) Gulfstream (G-IV) (M. Shapiro, NCAR, personal 

communication) is defined with the outbound and return flight legs that are 

approximately 1950 km and the two shorter flight legs that are around 450 km. One 

dropsonde is placed near the take-off/landing site and at each point where the flight track 

changes direction. Four dropsondes are evenly spaced along each flight leg for a total of 

20 dropsondes per flight. Each dropsonde is assumed to measure temperature, wind speed 

and direction at 50 hPa increments from 200 and 1000 hPa. The dropsonde observation 

errors are assigned the values assumed by NAVDAS for a conventional radiosonde. 

Although three airfields have been selected for the hypothetical aircraft 

deployment, their selection is not intended to imply that these locations would be used for 

actual targeting experiments. Elmendorf AFB near Anchorage, Alaska, which was used 
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for NORPEX and subsequent WSR missions, gives access to the eastern North Pacific 

Ocean. Tokyo International Airport in Japan allows sampling of the western Pacific 

Ocean. Finally, Eareckson Air Station on Shemya Island allows for sampling of the mid- 

Pacific Ocean. The results from Chapter IJI.F.3.d demonstrate that the total temperature, 

u- and v-wind observation sensitivities tend to be dominated by the contribution from the 

temperature analysis sensitivity gradient. Accordingly, the flight path from each airfield is 

defined so that the temperature analysis sensitivity gradients are most thoroughly 

surveyed with the pre-defined flight track. 

An additional hypothetical flight track corresponds to the backwards "N" pattern 

from Chapter IJJ.F.3.C. The two observations at the southeast corner are not used so that 

the total number of dropsondes (20) is consistent with the other hypothetical flight tracks. 

The G-TV targeting flight in Fig. 4.5 is included as an alternate targeting 

configuration. The mandatory and significant pressure level temperature and wind 

observations were included so that the total number of adaptive observations from the 11 

dropsondes is slightly larger than for the hypothetical flight tracks (see Table 4.6). 

Another hypothetical targeting strategy utilizes the new driftsonde observing 

system that is being developed by the National Center for Atmospheric Research (NCAR) 

Atmospheric Technology Division as a candidate observing system for the (proposed) 

The Hemispheric Observing system Research and Predictability Experiment 

(THORPEX)(M. Shapiro, NCAR, personal communication). The driftsonde observing 

system consists of a large polyethylene balloon with an attached gondola that can carry up 
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to 24 Global Positioning Satellite (GPS) dropsondes. The carrier balloon ascends to 

between 50 and 100 hPa and drifts with the prevailing stratospheric winds at a constant 

pressure level for up to five days. Dropsondes may be released at specified intervals (e.g., 

every 6 hours). The dropsonde observations are collected and sent via a low-earth- 

orbiting satellite (LEO) to ground processing stations for real-time dissemination on the 

Global Telecommunication System (GTS). 

Table 4.6. Observation counts for the different observing platforms for the 
hypothetical targeting experiments for a 3-h time window centered on 00 UTC 7 February 
1999. CTL: control or conventional observing networks; CTL+GIV: control plus G-IV 
flight track; CTL+el: control plus Elmendorf flight track; CTL+sl: control plus Shemya 
flight track; CTL+tl: control plus Tokyo flight track; CTL+c4: control plus Chapter 
III.F.3.C flight path; and CTL+dl: control plus driftsonde network. 

Observing Platform CTL CTL 

+GIV 

CTL 

+el 

CTL 

+sl 

CTL 

+tl 

CTL 

+c4 

CTL 

+dl 

Surface land 33872 33872 33872 33872 33872 33872 33872 

Surface marine 6222 6222 6222 6222 6222 6222 6222 

Aircraft 17709 17709 17709 17709 17709 17709 17709 

Cloud winds - infrared 4812 4812 4812 4812 4812 4812 4812 

Cloud winds - visible 126 126 126 126 126 126 126 

Water vapor winds 6186 6186 6186 6186 6186 6186 6186 

SSM/I windspeed 2698 2698 2698 2698 2698 2698 2698 

TOVS brightness 
temperatures 

62765 62765 62765 62765 62765 62765 62765 

Adaptive dropsondes 0 1253 1020 1020 1020 1020 2295 

Conventional radiosondes 72599 72599 72599 72599 72599 72599 72599 

Total 206996 208249 20816 20816 20816 20816 209291 
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Figure 4.7. Hypothetical driftsonde locations, denoted by the flag and "*", and valid for 
00 UTC 7 February 1999. The approximate locations of the 13 launch sites are indicated 
by a "L". The driftsonde carrier balloons were assumed to be launched at 12-h intervals 
beginning with 00 UTC 2 February 1999, and the 50-hPa FNMOC operational wind 
analyses were used to advect the carrier balloons. The driftsonde locations over the 
oceans are assumed to correspond to dropsonde releases. 

An example of the hypothetical driftsonde locations valid for 00 UTC 7 February 

1999 is shown in Fig. 4.7. The driftsonde locations were computed by R. Langland of 

NRL-Monterey using the atmospheric tracer capabilities associated with the Vis5d 

software package. The driftsonde carrier balloons were assumed to be launched at 12-h 

intervals beginning with 00 UTC 2 February 1999 from 13 launch sites (Fig. 4.7) along 

the east coast of Asia.   The 50-hPa FNMOC operational wind analyses were used to 
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advect the carrier balloons. The driftsonde locations over the oceans are assumed to 

correspond to dropsonde releases.  Each dropsonde is assumed to measure temperature, 

wind speed and direction at 50 hPa increments from 100 and 1000 hPa with an accuracy 

equivalent to a conventional radiosonde in NAVDAS. More than twice as many adaptive 

observations are available from the driftsonde network as from the hypothetical or G-IV 

flight tracks (see Table 4.6). 

The reduction in the expected variance of the change in the forecast aspect, or 

((67) \ , computed from (4.21) for each radiosonde profile (but using observation 

sensitivities computed using the entire set of conventional observations) is in Fig. 4.8. 

According to (4.21), the values in Fig. 4.8 represent a vertical summation of the (squared) 

error-weighted   observation   sensitivity   contributions   for   temperature   and   wind 

observations at each pressure level.   The contribution to ((67) )   is largest for the three 

Alaskan radiosonde stations of Shemya/Eareckson Air Station, St. Paul Island (57.15°N, 

170.22°W), and Sand Point.     By comparison, the contributions to ((67) \   are much 

smaller for the other radiosonde stations (green and gray circles). The large observation 

sensitivities and subsequent large contributions to ((67) )   from the three Alaskan 

radiosonde stations arise because these radiosonde stations are relatively isolated and are 

in regions where the analysis sensitivity gradients are strong. 

196 



Figure 4.8.  Reduction in the expected variance of the change in the 72-h forecast error 

((87) \   computed for all observations for the control (CTL) case, and plotted for the 

radiosonde observations. 
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The contributions to ((67) \   for the G-IV flight, the three hypothetical targeting 

flights, the backwards "N" deployment from Chapter HLF.3.C, and the driftsonde network 

are shown in Figs. 4.9 to 4.14, respectively. For most dropsonde deployments, the 

radiosondes from Shemya, St. Paul Island, and Sand Point continue to dominate the 

contributions to ((67) ) , and these contributions are reduced only when adaptive 

dropsondes are nearby (e.g., Figs. 4.10, 4.11, and 4.14). Overall, the largest 

contributions to ((67) ) occur for the hypothetical Shemya flight path dropsondes (Fig. 

4.11) and for the driftsonde-deployed dropsonde network (Fig. 4.14). Both of these 

dropsonde networks sample the large amplitude, large-scale analysis temperature and 

wind sensitivity gradients in the mid-Pacific Ocean in Figs. 4.1-4.4. 

The contributions to ((67) \ from the G-IV flight path dropsondes (Fig. 4.9) are 

modest compared to Shemya and St. Paul Island, with the largest contribution occurring 

for the more isolated dropsonde at the apex of the inverted "V" where the temperature 

and wind analysis sensitivity gradients are relatively large in amplitude and scale. In 

general, the dropsondes along the western flight leg coincide with stronger temperature 

and wind analysis sensitivity gradients than the dropsondes along the eastern flight leg 

and have correspondingly larger contributions to/(57) ) . 

The contributions to ((67) \ from the Elmendorf flight path dropsondes (Fig. 

4.10), which sample the small-scale low-level temperature and v-wind analysis sensitivity 
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Figure 4.9. As in Fig. 4.8, except for the reduction in the expected variance of the change 

in the 72-h forecast error /(bjf) computed for all observations for the control plus G- 

IV targeting (CTL+GIV) case, and plotted for the radiosonde and dropsonde observations. 
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Figure 4.10.   As in Fig. 4.8, except for the reduction in the expected variance of the 

change in the 72-h forecast error ((Ö7)2\   computed for all observations for the control 

plus hypothetical targeting deployment from Elmendorf AFB (CTL+el) case, and plotted 
for the radiosonde and dropsonde observations. 
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Figure 4.11.   As in Fig. 4.8, except for the reduction in the expected variance of the 

change in the 72-h forecast error ((67) \   computed for all observations for the control 

plus hypothetical targeting deployment from Shemya/ Eareckson air station (CTL+sl) 
case, and plotted for the radiosonde and dropsonde observations. 
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Figure 4.12.   As in Fig. 4.8, except for the reduction in the expected variance of the 

change in the 72-h forecast error ((87) \   computed for all observations for the control 

plus hypothetical targeting deployment from Tokyo (CTL+tl) case, and plotted for the 
radiosonde and dropsonde observations. 
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Figure 4.13.   As in Fig. 4.8, except for the reduction in the expected variance of the 

change in the 72-h forecast error ((5/) \   computed for all observations for the control 

plus hypothetical targeting deployment in Chapter DI.F.3.C. (CTL+c4) case, and plotted 
for the radiosonde and dropsonde observations. 
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Figure 4.14.   As in Fig. 4.8, except for the reduction in the expected variance of the 

change in the 72-h forecast error ((67) \   computed for all observations for the control 

plus hypothetical driftsonde-deployed dropsondes (CTL+dl) case, and plotted for the 
radiosonde and driftsonde-deployed dropsonde observations. 
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gradients extrema, are even weaker. This result is consistent with the single observation 

sensitivity maps in Fig. 3.46 that demonstrate that the sensitivity to a single temperature 

or wind observation near the extrema of the small-scale analysis sensitivity gradients is 

small. While Fig. 3.46 formally pertains to a single observation, the general conclusions 

from the single observation experiments are supported by the results from the Shemya 

flight (Fig. 4.11). The strongest contributions to ((67)2\ are from the dropsondes on the 

southbound flight leg that sample the larger amplitude and spatial scale analysis 

sensitivity gradients. In contrast, the contributions to ((07) \ from the Tokyo flight path 

dropsondes (Fig. 4.12) are moderately weak since the flight track barely intersects 

significant analysis sensitivity gradient features. 

Similar results are obtained for the driftsonde-deployed dropsonde network (Fig. 

4.14), where the strongest contributions to ((67)2\ occur for the dropsondes in the mid- 

Pacific Ocean near large horizontal scale and amplitude analysis sensitivity gradients. 

When driftsonde observations are combined with the conventional observations (Fig. 

4.14), the relative contributions to ((67)2\   from the three Alaskan radiosonde stations 

decrease (cf. Fig. 4.8), which suggests both the forecast aspect and the analysis are less 

dependent on these radiosondes when nearby driftsonde observations are present. 

Perhaps the most interesting results are for the backwards "N" deployment (Fig. 

4.13) from Chapter HLF.3.C. Since features similar to the high-amplitude, small-scale 

temperature analysis sensitivity gradient sub-structures (Fig. 4.1c) were often selected as 
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targets during FASTEX and NORPEX, the flight path in Fig. 4.13 was designed to 

sample both the extrema and the gradients, with the a priori expectation that such a 

deployment  would  maximize  the  observation  sensitivity.   However,  the  adaptive 

dropsonde contributions to \(o7)2\   are quite small, which indicates that the sensitivity 

to these observations is also small. These results support the conclusions from Chapter 

IH.F.3 that the data assimilation system is comparatively insensitive to the observations 

when the length scale of the analysis sensitivity sub-structures is smaller than the 

background error correlation length scale. While it is tempting to speculate that the 

majority of the observations in this deployment are unnecessary and may be eliminated, 

the results from Chapter III.C.3 suggest that, for small-scale analysis sensitivity gradients, 

the observation sensitivity increases as the observation density increases. Consequently, 

more observations may be required to sample this small-scale analysis sensitivity 

gradient. 

The reductions in the variance of the change in the forecast aspect are now 

computed for ten observing platforms for the seven different targeting configurations 

(Fig. 4.15).   For the control experiment (conventional observations only, red bar), the 

contributions to ((67)2\   are quite small for surface land, surface marine, and SSM/I 

windspeed observations, which is not surprising, given that the temperature and wind 

analysis sensitivity gradients at the lowest pressure levels have small amplitude (not 
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Figure 4.15. Relative contributions to the reduction in the variance of the change in the 
forecast aspect for ten observing platforms for the seven different targeting deployments 
corresponding to Figs. 4.8-4.14. 

shown), and the vertical coupling through the boundary layer is weak. The contributions 

from the visible cloud-tracked winds are also small, but this is principally due to the low 

number of visible cloud-tracked winds (Table 4.6). Larger contributions occur for aircraft 

winds, infrared cloud-tracked winds, water vapor winds, and TOVS brightness 

temperatures, with the largest contribution from the conventional radiosondes. When the 

G-IV adaptive observations are included (yellow bar), their relative contribution to 

((87) ) of 40000 is offset by small decreases from the other observations (primarily 

infrared and water vapor winds) so that the total ((57) )   increases by only 26000. This 
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suggests that some of the information in the G-IV dropsondes is redundant with respect to 

the conventional observations. 

The contributions  from the Elmendorf (green bar) and Tokyo  (pink bar) 

deployments are small, and the relative contributions to the total ((67) \   from the 

conventional observation platforms are relatively constant, which implies that these 

dropsonde observations do not contribute very much to the reduction in the variance of 

the change in J.     The backwards "N" deployment (cyan bar) in Fig. 4.13 has the 

smallest contribution to ((67) \ , despite this deployment thoroughly sampling the large 

amplitude, small-scale 850-hPa temperature analysis sensitivity gradient (Fig. 4.1c). 

The two adaptive observation deployments with the largest relative contributions 

to ((67 M   occur for the Shemya flight track (blue bar) and the driftsonde network 

(purple bar), even though these deployments have led to moderate decreases in the 

relative  contributions   from  TOVS   brightness   temperatures  and  the  conventional 

radiosonde network. It should be noted that the driftsonde contribution to ((67) ) 

represents a lower limit since, in an actual driftsonde experiment, the data assimilation 

cycle would have benefited from driftsonde-deployed dropsondes used in earlier forecast/ 

assimilation cycles.   The decrease in the conventional radiosonde network is primarily 

due to the reduction in ((Ö7)2) for the radiosonde observations from Shemya, St. Paul, 

and Sand Point (e.g., Figs. 4.11 and 4.14), which demonstrates that extremely large 
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observation sensitivities are not necessary to maximize the total reduction in ((67) \ . 

The decreases in the TOVS brightness temperature contributions occur because the 

relative weight or importance of these lower quality observations is less in the presence of 

the additional higher quality dropsonde observations in the highly sensitive regions. 

Interestingly, the TOVS contribution actually increases for the backwards "N" adaptive 

observation deployment (Fig. 4.13), which suggests that the adaptive observations have 

contributed very little useful information to the analysis. 

Since the contribution to {(67) \   from the Shemya aircraft deployment in Fig. 

4.11 is only slightly less than for the driftsonde network (which has more than twice as 

many observations), two slightly varied flight paths from Shemya are also evaluated. The 

first alternate flight path (Fig. 4.16) is located slightly east of the initial Shemya flight 

track, and samples more completely the large-scale 850-hPa temperature analysis 

sensitivity gradient in Fig. 4.1c. The second alternate flight path (Fig. 4.17) directly 

samples the maxima of the large-scale 850-hPa temperature analysis sensitivity gradient. 

The total reduction in the variance in the change of J and the relative contributions to 

((67) )   (Fig. 4.18) for the two alternate deployments (the light blue and light yellow 

bars) are larger than for the initial Shemya flight path (blue bar), but are smaller than for 

the driftsonde network contribution (purple bar). The largest increase occurs for the 

flight path (Fig. 4.16) that samples the 850-hPa large-scale temperature analysis 
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Figure 4.16.   As in Fig. 4.8, except for the reduction in the expected variance of the 

change in the 72-h forecast error ((5/)2\   computed for all observations for the control 

plus hypothetical first alternate targeting deployment from Shemya/ Eareckson air station 
(CTL+s2) case, and plotted for the radiosonde and dropsonde observations. 
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Figure 4.17.   As in Fig. 4.8, except for the reduction in the expected variance of the 

change in the 72-h forecast error ((57) \   computed for all observations for the control 

plus hypothetical second alternate targeting deployment from Shemya/ Eareckson air 
station (CTL+s3) case, and plotted for the radiosonde and dropsonde observations. 
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Figure 4.18. As in Fig. 4.15, except for relative contributions to the reduction in the 
variance of the change in the forecast aspect for ten observing platforms for the control 
plus driftsonde (CTL+dl) in Fig. 4.14 and three Shemya/Eareckson hypothetical targeting 
deployments labeled si, s2, and s3 corresponding to Figs. 4.11, 4.16, and 4.17. 

sensitivity gradient most completely (light blue bar). The relative TOVS contribution to 

((57) )   in Fig. 4.18 from the two alternate Shemya deployments (light blue and yellow 

bars) are larger than for the initial Shemya flight path (blue bar), which indicates that the 

two alternate Shemya deployments represent a more efficient mix of observations for the 

analysis. Comparison of Figs. 4.11 and 4.16 indicates that, even though the hypothetical 

observations for the southbound flight leg from Shemya are the same, the relative 
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contributions to ((07) \ are not the same, which demonstrates the dependence of the 

observation sensitivity on the distribution of the neighboring observations. 

Finally, two additional adaptive observation deployment strategies are considered. 

Suppose that an aircraft with dropsonde capabilities was available along with the 

driftsonde system. Is it worthwhile to deploy the aircraft to supplement the driftsonde 

network? The first experiment combines the conventional observations and the 

driftsonde-deployed dropsondes with the "best" (Fig. 4.16) hypothetical flight track from 

Shemya, and adds additional dropsondes to the highly sensitive mid-Pacific Ocean area. 

The second experiment combines the conventional and driftsonde observations with the 

hypothetical flight track from Tokyo in Fig. 4.12, and thereby supplements a region with 

few driftsonde-deployed dropsondes, and with weak temperature analysis sensitivity 

(panels (C) of Figs. 4.1-4.4).   The contributions to ((5/) }   are shown in Fig. 4.19. 

Whereas the additional dropsondes from the Tokyo flight path add only slightly to the 

total ((67) ) , the Shemya flight path dropsondes have a somewhat larger contribution. 

The increase in the total ((67) )   is largely due to the adaptive dropsondes, with net 

decreases in ((67) \   noted for the other observing platforms, and particularly for the 

TOVS brightness temperatures and the conventional radiosondes, which indicates that the 

adaptive observations do not exclusively add unique information to the data assimilation 

system.   These results also suggest that the observation density in the highly sensitive 
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regions is not sufficient, and that the additional observations should be placed in regions 

with stronger analysis sensitivity. 
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Figure 4.19. As in Fig. 4.15, except for relative contributions to the reduction in the 
variance of the change in the forecast aspect for ten observing platforms for the control 
(CTL) in Fig. 4.8, control plus driftsonde (CTL+dl) in Fig. 4.14, and hypothetical 
targeting deployments combining the driftsonde network with the second Shemya and the 
Tokyo hypothetical deployments labeled (dl+s2) and (dl+tl) corresponding to Figs. 4.16 
and 4.12. 

F.        CHAPTER SUMMARY 

The adjoint of the NAVDAS data assimilation system is used to compute the 

sensitivity of J to the observations available for an analysis valid at 00 UTC 7 February 

1999. This case corresponds to the largest 72-h NOGAPS forecast error verifying over 

the western United States and Canada during a three-year period from 1997 - 1999. The 

analysis sensitivity gradients were computed using an energy-weighted forecast error cost 
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function / for the NOGAPS forecast starting from the FNMOC/NOGAPS operational 

initial conditions valid at the target time of 00 UTC 7 February 1999 and verifying 72 

h later at 00 UTC 10 February 1999. 

Overall, the largest observation sensitivities occur for observations that are 

relatively isolated and near high-amplitude, large-scale analysis sensitivity gradients. In 

general, the largest sensitivities to the temperature or u- or v-wind observations do not 

occur at the same location. The largest sensitivity to a temperature observation occurs for 

the Shemya radiosonde, and probably occurs because the observation is isolated, assumed 

to be accurate, and is located near the center of a high-amplitude, large-scale temperature 

analysis sensitivity gradient. 

The largest sensitivity to a u-wind observation occurred for a water vapor wind 

near the high-amplitude, large-scale u-wind analysis sensitivity gradient associated with 

the northern branch of the subtropical jet. The largest v-wind observation sensitivities 

appear to be associated with the high-amplitude, large-scale temperature analysis 

sensitivity gradients, with weaker contributions (through the background error 

covariances) from the v-wind analysis sensitivity gradients at adjacent levels. These 

results are consistent with the two-dimensional results in Chapter ELF. 3 that the wind 

observation sensitivities may be dominated by the projection of Kr onto the temperature 

analysis sensitivity gradient, with weaker contributions from the univariate wind 

components (e.g., the projection of Kr onto the v-wind analysis sensitivity gradient). 

While the results from Chapter HI suggest that the largest wind observation sensitivities 
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are phase-shifted with the extrema of the temperature analysis sensitivity gradient, it is 

not possible to unambiguously state that this phase shift occurs for the NAVDAS adjoint 

observation sensitivity results because of the westward tilt with height of the temperature 

analysis sensitivity gradients and the effects of the vertical background error correlations. 

Higher density observations may also be needed to determine whether the phase shift 

exists. 

An important, non-targeting application of the data assimilation adjoint theory 

was illustrated with the TOVS brightness temperature observation sensitivities. Chapter 

HI demonstrated that large observation sensitivities occur when high-amplitude, large- 

scale analysis sensitivities coincide with an abrupt discontinuity in the observation 

density. Such observation density discontinuities occur for TOVS brightness 

temperatures along the edges of the satellite swath, or between ocean and land or sea-ice 

observations when the land and sea-ice observations are not used. The observations 

along these boundaries are less accurate for a variety of reasons. Since the observation 

sensitivity is larger for observations that are assumed to be accurate, the data assimilation 

systems should properly account for these sensitivity and accuracy factors when assigning 

the observation error so that the analyses and forecasts are not highly sensitive to the less 

accurate observations. 

A scalar measure of the reduction in the expected variance in the change of the 

forecast aspect J, which uses the observation sensitivities computed for the entire global 

set of observations, was introduced.  This measure, ((5/) >   may be computed for the 
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entire global set of observations, or a specified subset, such as the adaptive observing 

network. As such, it can be used to assess the relative efficiency of various adaptive 

observation deployments, to evaluate the existing observing network, or to design new 

observing systems. 

In this chapter, ((67) )   was used to evaluate the relative contributions for 

different hypothetical adaptive observation-targeting strategies. The two hypothetical 

targeting deployments with the largest contributions are the Shemya-based targeting flight 

and the driftsonde-deployed dropsonde network that sample the large-amplitude, large- 

scale analysis temperature and wind sensitivity gradients in the mid-Pacific Ocean. Large 

contributions also occur for several of the Alaskan radiosonde reports. When a 

hypothetical targeting flight is added to supplement the driftsonde network, a larger 

increase in {(67) \ occurs when the dropsondes are added to highly sensitive regions 

than when the same number of observations is added to comparatively data-void areas 

with weak sensitivity, which implies that sufficient data density has not been achieved in 

the sensitive regions. 

Perhaps the most remarkable result occurs for the targeting deployment designed 

to sample both the extrema and the gradients of the high-amplitude, small-scale 

temperature analysis sensitivity gradient sub-structure. Such features were often selected 

as targets based on adjoint-based targeting methods during FASTEX and NORPEX. 

However, the adaptive dropsonde contributions ((67) )   from this deployment are much 
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smaller than the contributions from the hypothetical adaptive dropsonde networks that 

sample the large amplitude, large-scale analysis temperature and wind sensitivity 

gradients in the mid-Pacific Ocean. These results suggest that targeting decisions based 

solely on the analysis sensitivity gradients or associated singular vectors may be 

substantially different from targeting decisions that also consider the adjoint of the data 

assimilation system. 
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V. SUMMARY AND CONCLUSIONS 

Despite ongoing improvements to observing systems, data assimilation systems, 

and numerical weather forecast models, it is clear that a significant component of the 

forecast error is due to analysis error in sparsely observed regions. However, if the 

regions where additional observations would have the largest potential positive impact on 

the forecast can be identified in advance, then these regions could be sampled with 

supplemental observations. This adaptive observation concept has generated a great deal 

of interest recently, and several objective targeting techniques have been developed. 

For the classical adjoint-based targeting methods, some aspect of interest of the 

forecast output is chosen as the cost function J, and the sensitivity or gradient of / with 

respect to the initial conditions is determined using the adjoint of the linearized forecast 

model. Numerous studies have demonstrated that regions with large sensitivity 

correspond to synoptic features where small errors in the initial conditions amplify 

rapidly during the ensuing numerical forecast and dominate the short- and medium-range 

forecast error. These analysis sensitivity gradients (and closely related singular vectors) 

were used by scientists from NRL - Monterey during the recent FASTEX and NORPEX 

field experiments to identify sensitive regions (or targets) for adaptive sampling using 

aircraft-deployed dropsondes. The expectation is that the additional observations would 

decrease the analysis error in these data-sparse sensitive regions, and thus improve the 

subsequent weather forecast. While assimilations of the aircraft-deployed dropsondes 

from some of the FASTEX and NORPEX targeting sorties were associated with 
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decreased forecast error in the verification area, the assimilation of adaptive dropsondes 

from other targeting deployments led to forecast degradation. 

The classical adjoint sensitivity gradient represents only the first part of the 

complete numerical forecast adjoint sensitivity problem. In the same way that the 

numerical weather forecast problem includes the data assimilation step, the complete 

numerical forecast adjoint sensitivity problem must include the adjoint of the data 

assimilation system. Thus, the complete forecast adjoint sensitivity includes two 

complementary components. The first step, which uses the adjoint of the linearized 

forecast model to compute the sensitivity of J to the initial conditions or analysis, 

corresponds to the classical adjoint sensitivity problem. In the second step, the adjoint of 

the data assimilation system is used to determine the sensitivity of the initial conditions to 

the observations and the background. Combining the classical sensitivity gradient, which 

is defined in analysis or grid space, with the adjoint of the data assimilation system gives 

the sensitivity of the forecast aspect to the observations and background that is defined in 

observation space. 

In this study, the adjoint of the data assimilation systems is used to explore the 

sensitivity of the forecast aspect J to the observations and background for progressively 

more complex idealized one- and two-dimensional data assimilation systems. The key 

results are briefly summarized in this chapter, with an emphasis on those relevant to the 

adaptive observation-targeting problem. 
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The observation sensitivity is largest when the observation is strongly projected 

onto the analysis sensitivity gradients by the adjoint of the assimilation system (e.g., Kr). 

This occurs when the spatial structures and length scales of Kr are similar to the analysis 

sensitivity gradient. In turn, the spatial structures and length scales of Kr are determined 

by the background error variances, the correlation length scale (4) and type (i.e., 

temperature and wind autocorrelations versus cross-correlations), the forward observation 

operators, and the distribution and properties of the observations. Because of the highly 

complex nature of these interactions, the observation sensitivity is far from intuitive, and 

it is difficult to draw general conclusions that are applicable under all conditions. 

Therefore, for the purposes of this discussion, the background error correlation length 

scale is assumed to be similar to the NAVDAS adjoint value of 385 km. An analysis 

sensitivity gradient is defined to be small scale when its characteristic length (Ls) is less 

than the background error correlation length scale (Z^), and is defined to be large scale 

when Ls is similar to 1^. 

The simplest problem corresponding to the one-dimensional univariate height 

analysis was considered first. The largest observation sensitivity occurs when an isolated 

height observation that is assumed to be accurate relative to the background is placed near 

the extrema of a large-scale height analysis sensitivity gradient. The observation 

sensitivity is much weaker when the analysis sensitivity gradients are either small-scale or 

weak, the observations are relatively inaccurate, or the observation density is high. Large 

observation sensitivity also occurs along hypothetical coastlines when large-scale analysis 
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sensitivity gradients coincide with the abrupt change in the density of the observations. 

The observation sensitivity results were explained as follows. When the observations are 

relatively isolated or associated with changes in the observation density, Kr is large in 

amplitude and spatial scale, and projects strongly on large-scale analysis sensitivity 

gradients. However, when the observations are dense, KT is small in amplitude and 

spatial scale, so that its projection onto either large- or small-scale analysis sensitivity 

gradients is weak. Similarly, since Kr is larger in amplitude and spatial scale for 

relatively accurate observations than for relatively inaccurate observations, the 

observation sensitivity is larger. 

While the one-dimensional univariate wind observation sensitivity results differ in 

detail from the one-dimensional height observation sensitivity results, the same general 

conclusions can be drawn. The main difference is that the univariate height observation 

sensitivity increases as Ls increases, while the univariate wind observation sensitivity 

decreases when Ls is much larger than l^ because of the negative side lobes on the 

background wind error correlation function. 

Whereas the maximum univariate one-dimensional observation sensitivity 

coincides with the extrema of the analysis sensitivity gradient, the maximum one- 

dimensional multivariate observation sensitivities involving the height-wind and wind- 

height background error correlations occur where the analysis sensitivity gradient is zero. 

This difference is due to the positive and negative side lobes of the height-wind and 

wind-height background error covariances. 
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A hypothetical flight path was designed to sample the extrema and gradients of an 

idealized two-dimensional height analysis sensitivity pattern composed of large- and 

small-scale sub-structures. The largest sensitivity occurs for the height observation at 

the end of the flight path that coincides with the large-scale height analysis sensitivity 

gradient sub-structure, and arises because of the change in the observation density. 

Consequently, Kr is large in amplitude and spatial scale and projects strongly onto the 

large-scale analysis sensitivity gradient. This result suggests that the large-scale analysis 

sensitivity gradient should be more thoroughly sampled to avoid very large observation 

sensitivity in sensitive regions. Overall, the general conclusions obtained for the one- 

dimensional univariate height observation sensitivity are supported by the two- 

dimensional univariate height observation sensitivity problem. 

The two-dimensional multivariate temperature, u- and v-wind observation 

sensitivities tend to be largest when an isolated observation is near the center of a large- 

amplitude, large-scale temperature analysis sensitivity gradient, and are considerably 

weaker for small-scale analysis sensitivity gradients. The multivariate contributions to 

the observation sensitivity, which are most apparent for wind observations, tend to shift 

the maximum observation sensitivity away from the extrema of the analysis sensitivity 

gradients. 

When an isolated temperature or wind observation is near the center of a small- 

scale temperature analysis sensitivity gradient sub-structure with nearby sub-structures of 

the opposing sign, the observation sensitivity is very weak.   Under these conditions, the 
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contributions to the observation sensitivity from the projection of Kr onto the analysis 

sensitivity gradient sub-structures are of opposing sign and a large degree of cancellation 

occurs. The observation sensitivity increases slightly when more observations are 

included, and attains an appreciable value only when the observations density is large, 

which implies that the two-dimensional data assimilation system requires a higher density 

of observations to analyze features such as the small-scale analysis sensitivity gradients 

than it does for large-scale analysis sensitivity gradients. Since l^ for the two- 

dimensional problem was selected to correspond to the NAVDAS value, this result is 

likely to also apply to NAVDAS. 

However, the high observation density may introduce another potential 

complication, and this was illustrated with a hypothetical swath of satellite observations. 

When the edges of the swath coincide with large-scale analysis sensitivity gradients, the 

sensitivities to the observations at the edge of the swath may be significantly larger than 

the sensitivities to the observations in the observation-dense center of the swath. In this 

respect, the data discontinuities along the edges of the swath are analogous to the 

coastline in the one-dimensional examples. This example has important implications for 

satellite observations since the observations along the edges of the satellite swaths tend to 

be less accurate than the observations in the center of the swath for a variety of reasons. 

The large observation sensitivities imply that the less accurate observations along the 

swath edge have greater potential to change the forecast aspect. One way to compensate 

for this effect is to increase the expected observation error for the observations along the 
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edge of the swath since this decreases the observation sensitivity and the potential impact 

of the less accurate observations. 

Finally, it was noted that limited area and global observation sensitivity 

calculations may differ considerably if the regions with significant analysis sensitivity are 

near the limited domain boundaries. 

Together, the one- and two-dimensional observation sensitivity examples provide 

the background needed to help interpret the NAVDAS adjoint observation sensitivity 

results. Even with this background, the three-dimensional NAVDAS adjoint observation 

sensitivity is difficult to understand because the three-dimensional analysis sensitivity 

gradients and background error covariances add considerably to the complexity of the 

problem. Nevertheless, many of the general results from the idealized examples appear 

to apply to the NAVDAS adjoint observation sensitivities. 

The NAVDAS adjoint observation sensitivities were computed for a case in 

February 1999 that corresponds to unusually large 72-h forecast errors over the western 

United States. The largest u-wind observation sensitivities correspond to the large-scale 

u-wind analysis sensitivity gradients associated with the northern branch of the 

subtropical jet, while the largest v-wind observation sensitivities appeared to be primarily 

connected to the large-scale temperature analysis sensitivity gradients at 500 hPa, with 

lesser contributions from the v-wind analysis sensitivity gradients at lower levels. These 

v-wind observation sensitivities for the NAVDAS adjoint are consistent with the 

multivariate phase-shifts in the multivariate results discussed above, although it is 
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difficult to separate the phase-shift contributions from the contributions due to the 

vertical coupling of the analysis sensitivity gradients through the background error 

covariances. The largest temperature observation sensitivities occur for several isolated 

Alaskan radiosonde stations in a region with a large-scale temperature analysis sensitivity 

gradient. For all of these examples, the density of the observations is low in the vicinity 

and this enhances the observation sensitivity of the radiosonde stations. 

The observation density is higher for areas sampled by the TOVS satellite, and the 

largest brightness temperature sensitivities correspond to the less accurate observations 

along data discontinuities such as the edges of the satellite swath, and between open 

ocean and land or sea ice where the brightness temperatures are not used. Since the 

present NAVDAS configuration does not adjust the expected observation errors to 

account for these less accurate observations, the observation sensitivities are 

inappropriately large. This example highlights an important, non-targeting application of 

the data assimilation adjoint theory. 

What are the implications of the observation sensitivity? For a given observation, 

the row of Kr corresponds to the column of the analysis weight matrix K, and the 

contribution to the analysis from that observation equals the matrix-vector multiplication 

of that column of K and the innovation. When K is large in spatial scale, the potential 

influence of the observation on the analysis is spread to more distant gridpoints, and when 

the amplitude of K is strong, the potential change to the analysis is large. Conversely, 

when K is small in spatial scale, any changes to the analysis will be localized, and when 
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the amplitude of K is weak, the potential change to the analysis is small. It is important 

to note that since the observation sensitivity calculations do not explicitly require the 

observed and background values, the actual impact of the observations on the analysis or 

forecast cannot be determined until the observations have been taken. Therefore, the 

observation sensitivity gives an estimate of the potential for an observation to change the 

analysis and the forecast aspect. 

Weak observation sensitivity occurs when one or more of the following 

conditions are met: the observations are assumed to be less accurate than the background, 

the analysis sensitivity is weak in the vicinity of the observations, the observation density 

is high, and the analysis sensitivity gradient is small-scale. When the expected 

observation error is greater than the expected background error, the observation is given 

less weight in the analysis, and when the observation density is high, the influence of the 

observation on the analysis is relatively localized. Under these conditions, the spatial 

structures and scales of Kr (which are largely determined by the background error 

covariances) do not coincide with the sub-structures of the analysis sensitivity gradient, 

and Kr projects weakly onto the analysis sensitivity gradient. Consequently, weak 

observation sensitivity implies that the analysis changes associated with the observation 

will not have the proper amplitude and structure to effectively change the analysis and 

forecast aspect. This reasoning provides a possible explanation for the lack of forecast 

improvement associated with the assimilation of the FASTEX and NORPEX adaptive 

observations. 
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Conversely, strong observation sensitivity occurs when the analysis sensitivity 

gradients are large scale and relatively strong, the observation density is low or there is an 

abrupt discontinuity in the density, and the expected error variances of the observations 

are less than the expected background error variances. When the observations are 

assumed to be accurate relative to the background, the observations are given more 

weight by the analysis, and when the observation density is low, the observation influence 

extends to farther away gridpoints. Under these conditions, the spatial structures and 

scales of KT may coincide with the analysis sensitivity gradient sub-structures and KT 

projects strongly onto the analysis sensitivity gradient. Therefore, strong observation 

sensitivity implies that the changes to the analysis may have both significant amplitude 

and the proper structure to effectively change the forecast aspect. 

Intuitively, it might be assumed that very large observation sensitivities are 

desirable. However, extremely large values of observation sensitivity imply that the 

analysis is very dependent upon a few observations in highly sensitive regions. Under 

these conditions, even small errors in the observations may contribute to large forecast 

errors. Large values of observation sensitivity are also associated with large background 

sensitivities, and indicate that the forecast aspect is highly sensitive to the background as 

well. When the analysis must rely on a few sparsely placed observations, it is unlikely 

that the observations can adequately correct the background errors, and the remaining 

background errors will contribute strongly to the forecast error. For these reasons, 

extremely large values of observation sensitivity are undesirable. As more observations 

are added to the system, the analysis becomes less dependent upon the individual 
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observations or the background, and the observation and background sensitivities 

decrease, which implies that intermediate values of observation sensitivity are desirable. 

This provides a possible explanation for the forecast degradation that occurred for several 

of the FASTEX and NORPEX cases with insufficient dropsondes properly distributed 

relative to the sensitive area. 

The data assimilation adjoint theory has also been used to illustrate how the 

observation sensitivity may be used to supplement the classical adaptive observation- 

targeting strategies. For example, the FASTEX and NORPEX adjoint-based targeting 

strategies tended to focus on the high-amplitude, small-scale analysis sensitivity gradient 

or singular vector sub-structures. These targeting decisions were founded on dynamical 

theory, as these features are frequently associated with rapidly intensifying baroclinic 

features that are highly sensitive to small errors in the initial conditions. However, 

dynamical reasoning does not take into account how the data assimilation system will use 

the adaptive observations, or the impact of the distribution and properties of the other 

observations in the area. As such, neither adjoint-based targeting method provides 

complete guidance as to where to place the additional observations in the sensitive areas. 

By comparison, the observation adjoint sensitivity, which specifically accounts for these 

factors, indicates that the sensitivity of the forecast aspect to observations placed near 

high-amplitude, small-scale analysis sensitivity gradients may be weak or even negligible, 

and suggests that targeting large-scale moderate to strong amplitude analysis sensitivity 

gradients is more advantageous. 
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The observation sensitivities were used to compute an estimate of reduction in the 

expected variance of the change in the forecast aspect / due to the observations. This 

scalar number may be computed for the entire suite of observations, for a specified 

observing platform or targeting deployment, or for a given dropsonde report. This 

measure has been used to assess the efficiency of different hypothetical targeting 

deployments. Since the sign and the amplitude of the change of the forecast aspect 

cannot be determined until the observations are taken, this measure alone cannot indicate 

whether, or how much, the forecast error will be reduced. 

The largest relative contributions were from the driftsonde-deployed dropsonde 

network and the hypothetical targeting flight from Shemya, both of which sampled the 

high-amplitude, large-scale temperature and v-wind analysis sensitivity gradients. The 

contributions to the total reduction in the expected variance of the change in J due to 

these two adaptive-observation deployments are also associated with decreases in the 

relative contributions from the other observation platforms (particularly the satellite 

winds and brightness temperatures), which suggest a certain amount of redundancy in the 

information among the different observing systems. The adaptive observations also 

reduce the extremely large observation sensitivities for the conventional Alaskan 

radiosondes, which indicates that the analysis has become less dependent upon these 

relatively isolated observations. In contrast, the hypothetical targeting deployment that 

was specifically designed to sample the gradients and extrema of the 850-hPa temperature 

analysis sensitivity pattern contributed very little to the total reduction in the expected 

variance of the change in the forecast aspect. 
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These results confirm that, for NAVDAS, targeting the large-scale, moderate- 

amplitude analysis sensitivity gradients is more advantageous than targeting the small- 

scale, high-amplitude sub-structures, and demonstrate that adaptive observation-targeting 

decisions based on the adjoint of the data assimilation system can be significantly 

different from targeting decisions based solely on analysis sensitivity gradients or singular 

vectors. The results also emphasize the importance of accounting for the data 

assimilation procedures in the adaptive observation-targeting problem. 

While this research was primarily concerned with the adaptive observation- 

targeting problem, the potential applicability of the data assimilation adjoint theory is 

much broader in that it illustrates how the data assimilation system works, and gives 

insight into how the observations are used by the data assimilation system. For example, 

the reduction in the expected variance of the change in the forecast aspect, which is 

computed using all observations, may be used to modify the data selection and screening 

procedures to obtain the most efficient mix of observations for the analysis. As 

illustrated with the TOVS brightness temperature example, the observation sensitivities 

may also be used as guidelines to adjust the observation error variances in the data 

assimilation system according to known factors. 

Because the NAVDAS adjoint observation sensitivities follow the same general 

principles as the idealized one- and two-dimensional observation sensitivity examples, 

certain behavior (e.g., the observation sensitivity is large when an accurate observation is 

near a large-scale analysis sensitivity gradient) may be expected with confidence. Several 
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errors in the assignment of the observation errors in NAVDAS were identified during the 

course of this research because the observation sensitivities were unexpectedly weak. 

These diagnostic applications of the NAVDAS adjoint observation sensitivity will be 

used in the near future as an additional NAVDAS evaluation tool prior to NAVDAS' 

operational implementation at FNMOC. 

A completely different application of the data assimilation adjoint theory is the a 

posteriori forensic assessment of the sources of forecast error attributable to the errors in 

the analysis, and how these are related to the observation distributions, types or 

accuracies. Traditional methods of locating such errors usually require a brute force 

approach, where several analyses are generated using different sets of observations and 

the resulting forecasts are compared to estimate the forecast aspect. Many such 

calculations may be required and it can be difficult or impossible to trace the forecast 

error back to its source. In contrast, the adjoint of the data assimilation system locates 

those observations with the greatest sensitivity to the forecast aspect. Observations with 

both large sensitivities and large innovations are those most likely to have changed the 

forecast aspect. 

The next phase of the targeting application of the observation sensitivity will be to 

investigate the potential of the driftsonde network for THORPEX. The adjoint of the data 

assimilation system will be used to answer fundamental questions concerning the 

locations and frequency of the carrier balloon launches and deployed dropsondes. The 

NAVDAS adjoint will also be used to evaluate whether the driftsonde network should be 
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supplemented with additional aircraft targeting flights, and if so, how best to sample the 

sensitive regions. 

Finally, the NAVDAS adjoint along with NAVDAS will be used to evaluate how 

well the FASTEX targeting flights sampled the sensitive areas given the characteristics of 

NAVDAS, and to relate the observation sensitivities to the changes made to the analysis 

by the observations. 
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